Philippe Feyel
Robust Control Optimization with Metaheuristics
Philippe Feyel
Robust Control Optimization with Metaheuristics
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
In the automotive industry, a Control Engineer must design a unique control law that is then tested and validated on a single prototype with a level of reliability high enough to to meet a number of complex specifications on various systems.
Andere Kunden interessierten sich auch für
- Farhad AssadianRobust Control161,99 €
- Shuyi ShaoRobust Discrete-Time Flight Control of UAV with External Disturbances125,99 €
- Gregory LevitinThe Universal Generating Function in Reliability Analysis and Optimization189,99 €
- Intelligent Automation and Computer Engineering147,99 €
- Ben M. ChenRobust and H_ Control125,99 €
- C. Gomez (ed.)Engineering and Scientific Computing with Scilab225,99 €
- Poong Hyun Seong (ed.)Reliability and Risk Issues in Large Scale Safety-Critical Digital Control Systems147,99 €
-
-
-
In the automotive industry, a Control Engineer must design a unique control law that is then tested and validated on a single prototype with a level of reliability high enough to to meet a number of complex specifications on various systems.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley
- Seitenzahl: 448
- Erscheinungstermin: 21. Februar 2017
- Englisch
- Abmessung: 240mm x 161mm x 29mm
- Gewicht: 839g
- ISBN-13: 9781786300423
- ISBN-10: 1786300427
- Artikelnr.: 45718515
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley
- Seitenzahl: 448
- Erscheinungstermin: 21. Februar 2017
- Englisch
- Abmessung: 240mm x 161mm x 29mm
- Gewicht: 839g
- ISBN-13: 9781786300423
- ISBN-10: 1786300427
- Artikelnr.: 45718515
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Philippe Feyel is an R&D Engineer for the high-tech company Sagem Défense Sécurité, part of the defence and security business of the SAFRAN group, in Paris, France.
Preface ix Introduction and Motivations xi Chapter 1. Metaheuristics for Controller Optimization 1 1.1. Introduction 1 1.2. Evolutionary approaches using differential evolution 2 1.2.1. Standard version 2 1.2.2. Perturbed version 7 1.3. Swarm approaches 8 1.3.1. Particle swarm optimization algorithm 8 1.3.2. Quantum particle swarm algorithm 14 1.3.3. Artificial bee colony optimization algorithm 20 1.3.4. Cuckoo search algorithm 25 1.3.5. Firefly algorithm 31 1.4. Summary 33 Chapter 2. Reformulation of Robust Control Problems for Stochastic Optimization 35 2.1. Introduction 35 2.2. H
synthesis 35 2.2.1. Full H
synthesis 35 2.2.2. Fixed-structure H
synthesis 45 2.2.3. Formulating H
synthesis for stochastic optimization 67 2.2.4. Conclusion 105 2.3.
-Synthesis 105 2.3.1. The problem of performance robustness 105 2.3.2.
-Synthesis 110 2.4. LPV/LFT synthesis 140 2.4.1. Introduction 140 2.4.2. The LPV/LFT controller synthesis problem 141 2.4.3. Reformulation for stochastic optimization 147 Chapter 3. Optimal Tuning of Structured and Robust H
Controllers Against High-level Requirements 171 3.1. Introduction and motivations 171 3.2. Loop-shaping H
synthesis 180 3.2.1. Approach principle 180 3.2.2. Generalized gain and phase margins 184 3.2.3. Four-block interpretation of the method 185 3.2.4. Practical implementation 186 3.2.5. Implementation of controllers 190 3.3. A generic method for the declination of requirements 194 3.3.1. General principles 194 3.3.2. Special cases 196 3.3.3. Management of requirement priority level 197 3.4. Optimal tuning of weighting functions 198 3.4.1. Optimization on nominal plant 198 3.4.2. Multiple plant optimization 202 3.4.3. Applicative example - inertial stabilization of line of sight 207 3.5. Optimal tuning of the fixed-structure and fixed-order final controller 238 3.5.1. Introduction 238 3.5.2. Toward eliminating weighting functions 240 3.5.3. Extensions to the approach 259 3.5.4. Link with standard control problems 277 Chapter 4. HinfStoch: A Toolbox for Structured and Robust Controller Computation Based on Stochastic Optimization 279 4.1. Introduction 279 4.2. Structured multiple plant H
synthesis 280 4.2.1. Principle 280 4.2.2. Formalism 280 4.3. Structured
-synthesis 284 4.3.1. Principle 284 4.3.2. Formalism 285 4.4. Structured LPV/LFT synthesis 288 4.4.1. Principle 288 4.4.2. Formalism 289 4.5. Structured and robust synthesis against high-level requirements with HinfStoch_ControllerTuning 292 4.5.1. Principle 292 4.5.2. Formalism 293 4.5.3. Examples 311 Appendices 351 Appendix A. Notions of Coprime Factorizations 353 Appendix B. Examples of LFT Form Used for Uncertain Systems 359 Appendix C. LFT Form Use of an Electromechanical System with Uncertain Flexible Modes 365 Appendix D. FTM (1D) Computation from a Time Signal 383 Appendix E. Choice of Iteration Number for CompLeib Tests 385 Appendix F. PDE versus DE 393 Bibliography 399 Index 407
synthesis 35 2.2.1. Full H
synthesis 35 2.2.2. Fixed-structure H
synthesis 45 2.2.3. Formulating H
synthesis for stochastic optimization 67 2.2.4. Conclusion 105 2.3.
-Synthesis 105 2.3.1. The problem of performance robustness 105 2.3.2.
-Synthesis 110 2.4. LPV/LFT synthesis 140 2.4.1. Introduction 140 2.4.2. The LPV/LFT controller synthesis problem 141 2.4.3. Reformulation for stochastic optimization 147 Chapter 3. Optimal Tuning of Structured and Robust H
Controllers Against High-level Requirements 171 3.1. Introduction and motivations 171 3.2. Loop-shaping H
synthesis 180 3.2.1. Approach principle 180 3.2.2. Generalized gain and phase margins 184 3.2.3. Four-block interpretation of the method 185 3.2.4. Practical implementation 186 3.2.5. Implementation of controllers 190 3.3. A generic method for the declination of requirements 194 3.3.1. General principles 194 3.3.2. Special cases 196 3.3.3. Management of requirement priority level 197 3.4. Optimal tuning of weighting functions 198 3.4.1. Optimization on nominal plant 198 3.4.2. Multiple plant optimization 202 3.4.3. Applicative example - inertial stabilization of line of sight 207 3.5. Optimal tuning of the fixed-structure and fixed-order final controller 238 3.5.1. Introduction 238 3.5.2. Toward eliminating weighting functions 240 3.5.3. Extensions to the approach 259 3.5.4. Link with standard control problems 277 Chapter 4. HinfStoch: A Toolbox for Structured and Robust Controller Computation Based on Stochastic Optimization 279 4.1. Introduction 279 4.2. Structured multiple plant H
synthesis 280 4.2.1. Principle 280 4.2.2. Formalism 280 4.3. Structured
-synthesis 284 4.3.1. Principle 284 4.3.2. Formalism 285 4.4. Structured LPV/LFT synthesis 288 4.4.1. Principle 288 4.4.2. Formalism 289 4.5. Structured and robust synthesis against high-level requirements with HinfStoch_ControllerTuning 292 4.5.1. Principle 292 4.5.2. Formalism 293 4.5.3. Examples 311 Appendices 351 Appendix A. Notions of Coprime Factorizations 353 Appendix B. Examples of LFT Form Used for Uncertain Systems 359 Appendix C. LFT Form Use of an Electromechanical System with Uncertain Flexible Modes 365 Appendix D. FTM (1D) Computation from a Time Signal 383 Appendix E. Choice of Iteration Number for CompLeib Tests 385 Appendix F. PDE versus DE 393 Bibliography 399 Index 407
Preface ix Introduction and Motivations xi Chapter 1. Metaheuristics for Controller Optimization 1 1.1. Introduction 1 1.2. Evolutionary approaches using differential evolution 2 1.2.1. Standard version 2 1.2.2. Perturbed version 7 1.3. Swarm approaches 8 1.3.1. Particle swarm optimization algorithm 8 1.3.2. Quantum particle swarm algorithm 14 1.3.3. Artificial bee colony optimization algorithm 20 1.3.4. Cuckoo search algorithm 25 1.3.5. Firefly algorithm 31 1.4. Summary 33 Chapter 2. Reformulation of Robust Control Problems for Stochastic Optimization 35 2.1. Introduction 35 2.2. H
synthesis 35 2.2.1. Full H
synthesis 35 2.2.2. Fixed-structure H
synthesis 45 2.2.3. Formulating H
synthesis for stochastic optimization 67 2.2.4. Conclusion 105 2.3.
-Synthesis 105 2.3.1. The problem of performance robustness 105 2.3.2.
-Synthesis 110 2.4. LPV/LFT synthesis 140 2.4.1. Introduction 140 2.4.2. The LPV/LFT controller synthesis problem 141 2.4.3. Reformulation for stochastic optimization 147 Chapter 3. Optimal Tuning of Structured and Robust H
Controllers Against High-level Requirements 171 3.1. Introduction and motivations 171 3.2. Loop-shaping H
synthesis 180 3.2.1. Approach principle 180 3.2.2. Generalized gain and phase margins 184 3.2.3. Four-block interpretation of the method 185 3.2.4. Practical implementation 186 3.2.5. Implementation of controllers 190 3.3. A generic method for the declination of requirements 194 3.3.1. General principles 194 3.3.2. Special cases 196 3.3.3. Management of requirement priority level 197 3.4. Optimal tuning of weighting functions 198 3.4.1. Optimization on nominal plant 198 3.4.2. Multiple plant optimization 202 3.4.3. Applicative example - inertial stabilization of line of sight 207 3.5. Optimal tuning of the fixed-structure and fixed-order final controller 238 3.5.1. Introduction 238 3.5.2. Toward eliminating weighting functions 240 3.5.3. Extensions to the approach 259 3.5.4. Link with standard control problems 277 Chapter 4. HinfStoch: A Toolbox for Structured and Robust Controller Computation Based on Stochastic Optimization 279 4.1. Introduction 279 4.2. Structured multiple plant H
synthesis 280 4.2.1. Principle 280 4.2.2. Formalism 280 4.3. Structured
-synthesis 284 4.3.1. Principle 284 4.3.2. Formalism 285 4.4. Structured LPV/LFT synthesis 288 4.4.1. Principle 288 4.4.2. Formalism 289 4.5. Structured and robust synthesis against high-level requirements with HinfStoch_ControllerTuning 292 4.5.1. Principle 292 4.5.2. Formalism 293 4.5.3. Examples 311 Appendices 351 Appendix A. Notions of Coprime Factorizations 353 Appendix B. Examples of LFT Form Used for Uncertain Systems 359 Appendix C. LFT Form Use of an Electromechanical System with Uncertain Flexible Modes 365 Appendix D. FTM (1D) Computation from a Time Signal 383 Appendix E. Choice of Iteration Number for CompLeib Tests 385 Appendix F. PDE versus DE 393 Bibliography 399 Index 407
synthesis 35 2.2.1. Full H
synthesis 35 2.2.2. Fixed-structure H
synthesis 45 2.2.3. Formulating H
synthesis for stochastic optimization 67 2.2.4. Conclusion 105 2.3.
-Synthesis 105 2.3.1. The problem of performance robustness 105 2.3.2.
-Synthesis 110 2.4. LPV/LFT synthesis 140 2.4.1. Introduction 140 2.4.2. The LPV/LFT controller synthesis problem 141 2.4.3. Reformulation for stochastic optimization 147 Chapter 3. Optimal Tuning of Structured and Robust H
Controllers Against High-level Requirements 171 3.1. Introduction and motivations 171 3.2. Loop-shaping H
synthesis 180 3.2.1. Approach principle 180 3.2.2. Generalized gain and phase margins 184 3.2.3. Four-block interpretation of the method 185 3.2.4. Practical implementation 186 3.2.5. Implementation of controllers 190 3.3. A generic method for the declination of requirements 194 3.3.1. General principles 194 3.3.2. Special cases 196 3.3.3. Management of requirement priority level 197 3.4. Optimal tuning of weighting functions 198 3.4.1. Optimization on nominal plant 198 3.4.2. Multiple plant optimization 202 3.4.3. Applicative example - inertial stabilization of line of sight 207 3.5. Optimal tuning of the fixed-structure and fixed-order final controller 238 3.5.1. Introduction 238 3.5.2. Toward eliminating weighting functions 240 3.5.3. Extensions to the approach 259 3.5.4. Link with standard control problems 277 Chapter 4. HinfStoch: A Toolbox for Structured and Robust Controller Computation Based on Stochastic Optimization 279 4.1. Introduction 279 4.2. Structured multiple plant H
synthesis 280 4.2.1. Principle 280 4.2.2. Formalism 280 4.3. Structured
-synthesis 284 4.3.1. Principle 284 4.3.2. Formalism 285 4.4. Structured LPV/LFT synthesis 288 4.4.1. Principle 288 4.4.2. Formalism 289 4.5. Structured and robust synthesis against high-level requirements with HinfStoch_ControllerTuning 292 4.5.1. Principle 292 4.5.2. Formalism 293 4.5.3. Examples 311 Appendices 351 Appendix A. Notions of Coprime Factorizations 353 Appendix B. Examples of LFT Form Used for Uncertain Systems 359 Appendix C. LFT Form Use of an Electromechanical System with Uncertain Flexible Modes 365 Appendix D. FTM (1D) Computation from a Time Signal 383 Appendix E. Choice of Iteration Number for CompLeib Tests 385 Appendix F. PDE versus DE 393 Bibliography 399 Index 407