38,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
19 °P sammeln
  • Broschiertes Buch

Estimating measures of location is a fundamental statistical problem. The sample mean is not always a good choice to estimate location because it is not resistant to the influence of outliers. To treat this problem in a precise manner when nonnormality is present, we may use robust location estimates. In this work, we present a number of robust location functionals and deter- mine their breakdown point and influence function. We study robust location estimates such as the sample trimmed mean, the sample Winsorized mean and estimates based on symmetric quantiles. Confidence interval estimation…mehr

Produktbeschreibung
Estimating measures of location is a fundamental
statistical problem. The sample mean is not always a
good choice to estimate location because it is
not resistant to the influence of outliers. To treat
this problem in a precise manner when nonnormality is
present, we may use robust location estimates. In
this work, we present a number of robust location
functionals and deter- mine their breakdown point and
influence function. We study robust location
estimates such as the sample trimmed mean, the sample
Winsorized mean and estimates based on symmetric
quantiles. Confidence interval estimation and
hypothesis testing are examined from a robust
perspective. Both the one-sample case and the
two-sample case are considered, the latter under two
situations : independence and dependence. A few
practical examples illustrate the study. Some R
programmes are presented in this book.
Autorenporträt
BEI FENG graduated in mathematics (Wuhan Normal Institute,Hankou
Branch, China, 1985),and obtained a Master Science in Statistics
(Laval University, Canada, 2003). She works for
Research unit on children''s psychosocial maladjustment, Laval
University, Canada. As a statistician, she has many research
interests especially in robust statistics.