Schade – dieser Artikel ist leider ausverkauft. Sobald wir wissen, ob und wann der Artikel wieder verfügbar ist, informieren wir Sie an dieser Stelle.
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An intriguing look at the "impossible" geometric constructions (those that defy completion with just a ruler and a compass), this book covers angle trisection and circle division. 1970 edition.
Andere Kunden interessierten sich auch für
- Andrew SuttonRuler & Compass9,49 €
- Roland DeauxIntroduction to the Geometry of Complex Numbers14,99 €
- Alan HoldenShapes, Space, and Symmetry15,99 €
- Élie CartanThe Theory of Spinors14,99 €
- Magnus J WenningerSpherical Models17,99 €
- Nathan Altshiller-CourtCollege Geometry16,99 €
- I M GelfandThe Method of Coordinates9,49 €
An intriguing look at the "impossible" geometric constructions (those that defy completion with just a ruler and a compass), this book covers angle trisection and circle division. 1970 edition.
Produktdetails
- Produktdetails
- Verlag: Dover Publications
- Seitenzahl: 160
- Erscheinungstermin: 20. Oktober 2011
- Englisch
- Abmessung: 234mm x 38mm x 8mm
- Gewicht: 172g
- ISBN-13: 9780486425153
- ISBN-10: 0486425150
- Artikelnr.: 21251221
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Dover Publications
- Seitenzahl: 160
- Erscheinungstermin: 20. Oktober 2011
- Englisch
- Abmessung: 234mm x 38mm x 8mm
- Gewicht: 172g
- ISBN-13: 9780486425153
- ISBN-10: 0486425150
- Artikelnr.: 21251221
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Nicholas D. Kazarinoff
Contents PART ONE. ANGLE TRISECTION CHAPTER ONE. PROOF AND UNSOLVED
PROBLEMS 1.1 Angle Trisection and Bird Migration 1.2 Proof 1.3 Solved and
Unsolved Problems 1.4 Things to Come CHAPTER TWO. GROUND RULES AND THEIR
ALGEBRAIC INTERPRETATION 2.1 Constructed Points 2.2 Analytic Geometry
CHAPTER THREE. SOME HISTORY CHAPTER FOUR. FIELDS 4.1 Fields of Real Numbers
4.2 Quadratic Fields 4.3 Iterated Quadratic Extensions of R 4.4 Algebraic
Classification of Constructible Numbers CHAPTER FIVE. ANGLES, CUBES, AND
CUBICS 5.1 Cubic Equations 5.2 Angles of 20° 5.3 Doubling a Unit Cube 5.4
Some Trisectable and Nontrisectable Angles 5.5 Trisection with n Points
Given CHAPTER SIX. OTHER MEANS 6.1 Marked Ruler, Quadratrix, and Hyperbola
6.2 Approximate Trisections PART II. CIRCLE DIVISION CHAPTER SEVEN.
IRREDUCIBILITY AND FACTORIZATION 7.1 Why Irreducibility? 7.2 Unique
Factorization 7.3 Eisenstein's Test CHAPTER EIGHT. UNIQUE FACTORIZATION OF
QUADRATIC INTEGERS CHAPTER NINE. FINITE DIMENSIONAL VECTOR SPACES 9.1
Definitions and Examples 9.2 Linear Dependence and Linear Independence 9.3
Bases and Dimension 9.4 Bases for Iterated Quadratic Extensions of R
CHAPTER TEN. ALGEBRAIC FIELDS 10.1 Algebraic Fields as Vector Spaces 10.2
The Last Link CHAPTER ELEVEN. NONCONSTRUCTIBLE REGULAR POLYGONS 11.1
Construction of a Regular Pentagon 11.2 Constructibility of Regular
Pentagons, a Second View 11.3 Irreducible Polynomials and Regular (2n + 1
)-gons 11.4 Nonconstructible Regular Polygons 11.5 Regular p"-gons 11.6
Squaring a Circle Appendix I Appendix II References Index
PROBLEMS 1.1 Angle Trisection and Bird Migration 1.2 Proof 1.3 Solved and
Unsolved Problems 1.4 Things to Come CHAPTER TWO. GROUND RULES AND THEIR
ALGEBRAIC INTERPRETATION 2.1 Constructed Points 2.2 Analytic Geometry
CHAPTER THREE. SOME HISTORY CHAPTER FOUR. FIELDS 4.1 Fields of Real Numbers
4.2 Quadratic Fields 4.3 Iterated Quadratic Extensions of R 4.4 Algebraic
Classification of Constructible Numbers CHAPTER FIVE. ANGLES, CUBES, AND
CUBICS 5.1 Cubic Equations 5.2 Angles of 20° 5.3 Doubling a Unit Cube 5.4
Some Trisectable and Nontrisectable Angles 5.5 Trisection with n Points
Given CHAPTER SIX. OTHER MEANS 6.1 Marked Ruler, Quadratrix, and Hyperbola
6.2 Approximate Trisections PART II. CIRCLE DIVISION CHAPTER SEVEN.
IRREDUCIBILITY AND FACTORIZATION 7.1 Why Irreducibility? 7.2 Unique
Factorization 7.3 Eisenstein's Test CHAPTER EIGHT. UNIQUE FACTORIZATION OF
QUADRATIC INTEGERS CHAPTER NINE. FINITE DIMENSIONAL VECTOR SPACES 9.1
Definitions and Examples 9.2 Linear Dependence and Linear Independence 9.3
Bases and Dimension 9.4 Bases for Iterated Quadratic Extensions of R
CHAPTER TEN. ALGEBRAIC FIELDS 10.1 Algebraic Fields as Vector Spaces 10.2
The Last Link CHAPTER ELEVEN. NONCONSTRUCTIBLE REGULAR POLYGONS 11.1
Construction of a Regular Pentagon 11.2 Constructibility of Regular
Pentagons, a Second View 11.3 Irreducible Polynomials and Regular (2n + 1
)-gons 11.4 Nonconstructible Regular Polygons 11.5 Regular p"-gons 11.6
Squaring a Circle Appendix I Appendix II References Index
Contents PART ONE. ANGLE TRISECTION CHAPTER ONE. PROOF AND UNSOLVED
PROBLEMS 1.1 Angle Trisection and Bird Migration 1.2 Proof 1.3 Solved and
Unsolved Problems 1.4 Things to Come CHAPTER TWO. GROUND RULES AND THEIR
ALGEBRAIC INTERPRETATION 2.1 Constructed Points 2.2 Analytic Geometry
CHAPTER THREE. SOME HISTORY CHAPTER FOUR. FIELDS 4.1 Fields of Real Numbers
4.2 Quadratic Fields 4.3 Iterated Quadratic Extensions of R 4.4 Algebraic
Classification of Constructible Numbers CHAPTER FIVE. ANGLES, CUBES, AND
CUBICS 5.1 Cubic Equations 5.2 Angles of 20° 5.3 Doubling a Unit Cube 5.4
Some Trisectable and Nontrisectable Angles 5.5 Trisection with n Points
Given CHAPTER SIX. OTHER MEANS 6.1 Marked Ruler, Quadratrix, and Hyperbola
6.2 Approximate Trisections PART II. CIRCLE DIVISION CHAPTER SEVEN.
IRREDUCIBILITY AND FACTORIZATION 7.1 Why Irreducibility? 7.2 Unique
Factorization 7.3 Eisenstein's Test CHAPTER EIGHT. UNIQUE FACTORIZATION OF
QUADRATIC INTEGERS CHAPTER NINE. FINITE DIMENSIONAL VECTOR SPACES 9.1
Definitions and Examples 9.2 Linear Dependence and Linear Independence 9.3
Bases and Dimension 9.4 Bases for Iterated Quadratic Extensions of R
CHAPTER TEN. ALGEBRAIC FIELDS 10.1 Algebraic Fields as Vector Spaces 10.2
The Last Link CHAPTER ELEVEN. NONCONSTRUCTIBLE REGULAR POLYGONS 11.1
Construction of a Regular Pentagon 11.2 Constructibility of Regular
Pentagons, a Second View 11.3 Irreducible Polynomials and Regular (2n + 1
)-gons 11.4 Nonconstructible Regular Polygons 11.5 Regular p"-gons 11.6
Squaring a Circle Appendix I Appendix II References Index
PROBLEMS 1.1 Angle Trisection and Bird Migration 1.2 Proof 1.3 Solved and
Unsolved Problems 1.4 Things to Come CHAPTER TWO. GROUND RULES AND THEIR
ALGEBRAIC INTERPRETATION 2.1 Constructed Points 2.2 Analytic Geometry
CHAPTER THREE. SOME HISTORY CHAPTER FOUR. FIELDS 4.1 Fields of Real Numbers
4.2 Quadratic Fields 4.3 Iterated Quadratic Extensions of R 4.4 Algebraic
Classification of Constructible Numbers CHAPTER FIVE. ANGLES, CUBES, AND
CUBICS 5.1 Cubic Equations 5.2 Angles of 20° 5.3 Doubling a Unit Cube 5.4
Some Trisectable and Nontrisectable Angles 5.5 Trisection with n Points
Given CHAPTER SIX. OTHER MEANS 6.1 Marked Ruler, Quadratrix, and Hyperbola
6.2 Approximate Trisections PART II. CIRCLE DIVISION CHAPTER SEVEN.
IRREDUCIBILITY AND FACTORIZATION 7.1 Why Irreducibility? 7.2 Unique
Factorization 7.3 Eisenstein's Test CHAPTER EIGHT. UNIQUE FACTORIZATION OF
QUADRATIC INTEGERS CHAPTER NINE. FINITE DIMENSIONAL VECTOR SPACES 9.1
Definitions and Examples 9.2 Linear Dependence and Linear Independence 9.3
Bases and Dimension 9.4 Bases for Iterated Quadratic Extensions of R
CHAPTER TEN. ALGEBRAIC FIELDS 10.1 Algebraic Fields as Vector Spaces 10.2
The Last Link CHAPTER ELEVEN. NONCONSTRUCTIBLE REGULAR POLYGONS 11.1
Construction of a Regular Pentagon 11.2 Constructibility of Regular
Pentagons, a Second View 11.3 Irreducible Polynomials and Regular (2n + 1
)-gons 11.4 Nonconstructible Regular Polygons 11.5 Regular p"-gons 11.6
Squaring a Circle Appendix I Appendix II References Index