Rules to Infinity defends the thesis that mathematics contributes to the explanatory power of science by expressing conceptual rules that allow for the transformation of empirical descriptions. It claims that mathematics should not be thought of as describing, in any substantive sense, an abstract realm of eternal mathematical objects, as traditional Platonists have thought.
Rules to Infinity defends the thesis that mathematics contributes to the explanatory power of science by expressing conceptual rules that allow for the transformation of empirical descriptions. It claims that mathematics should not be thought of as describing, in any substantive sense, an abstract realm of eternal mathematical objects, as traditional Platonists have thought.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Mark Povich is Visiting Assistant Professor in Philosophy at University of Rochester. He has published articles in The British Journal for the Philosophy of Science, Erkenntnis, Mind, Philosophy of Science, Studies in History and Philosophy of Science Part A, Synthese, among others.
Inhaltsangabe
Preface Chapter 1. Introduction: Scientific Explanation, Mathematics, and Metaontology Chapter 2. Distinctively Mathematical Explanation Chapter 3. Renormalization Group Explanation Chapter 4. The Narrow Ontic Counterfactual Account Chapter 5. Deflating the Narrow Ontic Counterfactual Account Chapter 6. Semantics, Metasemantics, and Function Chapter 7. The Content of a Mathematical Model Chapter 8. Normativism and its Rivals Chapter 9. Conclusion References Index
Preface Chapter 1. Introduction: Scientific Explanation, Mathematics, and Metaontology Chapter 2. Distinctively Mathematical Explanation Chapter 3. Renormalization Group Explanation Chapter 4. The Narrow Ontic Counterfactual Account Chapter 5. Deflating the Narrow Ontic Counterfactual Account Chapter 6. Semantics, Metasemantics, and Function Chapter 7. The Content of a Mathematical Model Chapter 8. Normativism and its Rivals Chapter 9. Conclusion References Index
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826