59,99 €
inkl. MwSt.
Versandkostenfrei*
Sofort lieferbar
payback
0 °P sammeln
  • Broschiertes Buch

Die moderne Werkstofftechnologie ist dadurch gekennzeichnet, daß sie in weit größerem Maße, als es früher möglich schien, metastabile Zustände für die Herstellung von Legierungen und eine damit verbundene Gefüge-Optimierung einsetzen kann. Beispiele sind das mechanische Legieren oder etwa die Erstarrung aus tief unterkühlten Schmelzen. Die Verwendung ungewöhnlicher Tie gelmaterialen (z. B. der Aerogele), behälterfreie Verfahren oder das Erschmelzen unter Schwere losigkeit gestatten neue Einblicke, neue Anwendungsmöglichkeiten und weiteres Entwicklungs potential auf sehr breiter Front, auch in…mehr

Produktbeschreibung
Die moderne Werkstofftechnologie ist dadurch gekennzeichnet, daß sie in weit größerem Maße, als es früher möglich schien, metastabile Zustände für die Herstellung von Legierungen und eine damit verbundene Gefüge-Optimierung einsetzen kann. Beispiele sind das mechanische Legieren oder etwa die Erstarrung aus tief unterkühlten Schmelzen. Die Verwendung ungewöhnlicher Tie gelmaterialen (z. B. der Aerogele), behälterfreie Verfahren oder das Erschmelzen unter Schwere losigkeit gestatten neue Einblicke, neue Anwendungsmöglichkeiten und weiteres Entwicklungs potential auf sehr breiter Front, auch in Richtung praktischer Fragestellungen. Weiterhin ist an zumerken, daß die moderne rechnerische Simulation von Gieß- und Erstarrungsvorgängen insbe sondere in der erstarrungstechnologischen Industrie einen Entwicklungsschub hervorruft, der auf einer gesunden theoretischen Basis aufbaut. Diese Entwicklung führt zu innovativen Werkstoffen und neuartigen Bauteilen, welche beide unter Nutzung ebenfalls entsprechend modifizierter Pro zeßtechniken entstehen. Die dafür erforderliche theoretische Grundlage profitiert insbesondere von einem Zusammenwirken mehrerer wissenschaftlicher Disziplinen. Die organisatorische und finanzielle Grundlage für eine solche interdisziplinäre Zusammen arbeit wurde 1993 durch die Einrichtung des Graduiertenkollegs "Schmelze, Erstarrung, Grenz flächen" geschaffen. Das Kolleg wurde begleitet von einer Vorlesungsreihe, die die Fachgebiete der beteiligten Institute, ihrer Stipendiaten und Kollegiaten widerspiegelt. Von der Thermodyna mik der Schmelze, der Fluiddynamik und Transportphänomenen über die Kinetik der Erstarrung, mit eingeschlossen auch Seigerungsvorgänge sowie die damit verbundenen Wachstumsfrontmor phologien, bis hin zu Vorgängen im Festkörper, insbesondere ausgelöst durch Grenzflächen (Ost waldreifung, Korngrenzendynamik), wurde vieles verknüpft, was nicht oft in einem Atemzug ge nannt wird. Auch technologische Fragestellungen wurden nicht ausgelassen, wie beispielsweise die Prozesse in der Gießereitechnik.
Autorenporträt
Iván Egry ist Physiker und begeisterter Golfer. Er hat Physik in Frankfurt/Main, Oxford (UK) und Aachen studiert. Von 1985 bis 2011 arbeitete er am Deutschen Zentrum für Luft- und Raumfahrt (DLR), wo er unter anderem das Center of Excellence ZEUS für Erstarrungsforschung leitete. Er war als Gastprofessor am National Physical Laboratory (NPL, UK) und am MIT (Boston, USA). Iván Egry ist leidenschaftlicher Golfspieler.