Self-Assembling Systems
Theory and Simulation
Herausgegeben:Yan, Li-Tang
Self-Assembling Systems
Theory and Simulation
Herausgegeben:Yan, Li-Tang
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Provides comprehensive knowledge on concepts, theoretical methods and state-of-the-art computational techniques for the simulation of self-assembling systems _ Looks at the field of self-assembly from a theoretical perspective _ Highlights the importance of theoretical studies and tailored computer simulations to support the design of new self-assembling materials with useful properties _ Divided into three parts covering the basic principles of self-assembly, methodology, and emerging topics
Andere Kunden interessierten sich auch für
- Ron ElberMolecular Kinetics in Condensed Phases110,99 €
- Fragmentation: Toward Accurate Calculations on Complex Molecular Systems179,99 €
- Reviews in Computational Chemistry, Volume 29232,99 €
- Chemical Reactivity in Confined Systems235,99 €
- Molecular Modeling of Geochemical Reactions136,99 €
- Ai-Guided Design and Property Prediction for Zeolites and Nanoporous Materials224,99 €
- Guo-Cong GuoElectronic Structure Crystallography and Functional Motifs of Materials95,99 €
-
-
-
Provides comprehensive knowledge on concepts, theoretical methods and state-of-the-art computational techniques for the simulation of self-assembling systems
_ Looks at the field of self-assembly from a theoretical perspective
_ Highlights the importance of theoretical studies and tailored computer simulations to support the design of new self-assembling materials with useful properties
_ Divided into three parts covering the basic principles of self-assembly, methodology, and emerging topics
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
_ Looks at the field of self-assembly from a theoretical perspective
_ Highlights the importance of theoretical studies and tailored computer simulations to support the design of new self-assembling materials with useful properties
_ Divided into three parts covering the basic principles of self-assembly, methodology, and emerging topics
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119113140
- 1. Auflage
- Seitenzahl: 384
- Erscheinungstermin: 19. Dezember 2016
- Englisch
- Abmessung: 246mm x 170mm x 25mm
- Gewicht: 703g
- ISBN-13: 9781119113140
- ISBN-10: 1119113148
- Artikelnr.: 45637344
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Wiley / Wiley & Sons
- Artikelnr. des Verlages: 1W119113140
- 1. Auflage
- Seitenzahl: 384
- Erscheinungstermin: 19. Dezember 2016
- Englisch
- Abmessung: 246mm x 170mm x 25mm
- Gewicht: 703g
- ISBN-13: 9781119113140
- ISBN-10: 1119113148
- Artikelnr.: 45637344
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Professor Li-Tang Yan, Tsinghua University, China Professor Yan's research focuses on computational macromolecular science, materials design and self-assembly. He uses multiscale modeling and simulation methods as well as theoretical analysis to explore the basic science and the fundamental principles in studies spanning polymer science, nanoscience, biomacromolecules and biomembranes. Professor Yan has published more than 60 papers in peer reviewed journals such as Nano Letters, ACS Nano, Biomaterials, Scientific Reports, JPC Lett, Nanoscale; these articles cover some important directions in the field of self-assembling systems, e.g., polymer nanocomposites, self-assembly in biomembranes, and self-assembly of nanoparticles to various suprastructures. In 2013 he published an invited review articles in Progress in Polymer Science, entitled "Computational Modeling and Simulation of Nanoparticle Self-Assembly in Polymeric Systems: Structures, Properties and External Field Effects". In 2014 he received an Excellent Young Investigator Award from NSFC (Natural Science Foundation of China).
List of Contributors xiii
Preface xvii
1 Theoretical Studies and Tailored Computer Simulations in Self-Assembling Systems: A General Aspect 1
Zihan Huang and Li-Tang Yan
1.1 Introduction 1
1.2 Emerging Self-Assembling Principles 3
1.2.1 Predictive Science and Rational Design of Complex Building Blocks 3
1.2.2 Entropy-Driven Ordering and Self-Assembly 5
1.2.3 Programmable Self-Assembly 10
1.2.4 Self-Assembling Kinetics: Supracolloidal Reaction 14
Acknowledgments 16
References 16
2 Developing Hybrid ModelingMethods to Simulate Self-Assembly in Polymer Nanocomposites 20
Xin Yong, Stephen C. Snow, Olga Kuksenok and Anna C. Balazs
2.1 Introduction 20
2.2 Methodology 21
2.2.1 Dissipative Particle Dynamics 21
2.2.2 Polymer Chains, Gels, and Nanoparticles 22
2.2.3 Radical PolymerizationModel 24
2.3 Results and Discussions 27
2.3.1 Modeling Bulk Polymerization Using FRP and ATRP 27
2.3.2 Modeling Regeneration of Severed Polymer Gels with Interfacially Active Nanorods 32
2.3.3 Modeling the Formation of Polymer-Clay Composite Gels 43
2.4 Conclusions 47
Acknowledgments 48
References 49
3 Theory and Simulation Studies of Self-Assembly of Helical Particles 53
Giorgio Cinacchi, Alberta Ferrarini, Elisa Frezza, Achille Giacometti and Hima Bindu Kolli
3.1 Introduction: Why Hard Helices? 53
3.2 Liquid Crystal Phases 55
3.3 Hard Helices: A MinimalModel 56
3.4 Numerical Simulations 57
3.4.1 Monte Carlo in Various Ensembles 57
3.4.1.1 Canonical Monte Carlo simulations (NVT-MC) 59
3.4.1.2 Isothermal-IsobaricMonte Carlo Simulations (NPT-MC) 59
3.4.2 Details on the MC Simulation of Hard Helices 59
3.5 Onsager (Density Functional) Theory 61
3.6 Onsager-LikeTheory for the Cholesteric and Screw-Nematic Phases 64
3.7 Order Parameters and Correlation Functions 67
3.7.1 Nematic Order Parameter 68
3.7.2 Screw-Like Nematic Order Parameter 68
3.7.3 Smectic Order Parameter 70
3.7.4 Hexatic Order Parameter 70
3.7.5 Parallel and Perpendicular Pair Correlation Functions 71
3.8 The Physical Origin of Cholesteric and Screw-Like Order 73
3.9 The Phase Diagram of Hard Helices 74
3.9.1 The Equation of State 75
3.9.2 Phase Diagrams in the Volume Fraction-Pitch Plane 76
3.9.2.1 Phase Diagram for r = 0.1 77
3.9.2.2 Phase Diagram for r = 0.2 78
3.9.2.3 Phase Diagram for r = 0.4 79
3.10 Helical (Bio)Polymers and Colloidal Particles 79
3.11 Conclusions and Perspectives 81
Acknowledgments 82
References 82
4 Self-Consistent Field Theory of Self-Assembling Multiblock Copolymers 85
Weihua Li and An-Chang Shi
4.1 Introduction 85
4.2 Theoretical Framework: Self-Consistent Field Theory of Block Copolymers 88
4.3 Numerical Methods of SCFT 90
4.3.1 Reciprocal-Space Method 90
4.3.2 Real-Space Method 93
4.3.3 Pseudo-SpectralMethod 95
4.3.4 Fourth-Order Pseudo-Spectral Method 98
4.4 Application of SCFT to Multiblock Copolymers 98
4.5 Conclusions and Discussions 104
Acknowledgments 107
References 107
5 Simulation Models of Soft Janus and Patchy Particles 109
Zhan-Wei Li, Zhao-Yan Sun and Zhong-Yuan Lu
5.1 Introduction 109
5.2 Soft Janus Particle Models 111
5.2.1 Soft One-Patch Janus Particle Model 111
Preface xvii
1 Theoretical Studies and Tailored Computer Simulations in Self-Assembling Systems: A General Aspect 1
Zihan Huang and Li-Tang Yan
1.1 Introduction 1
1.2 Emerging Self-Assembling Principles 3
1.2.1 Predictive Science and Rational Design of Complex Building Blocks 3
1.2.2 Entropy-Driven Ordering and Self-Assembly 5
1.2.3 Programmable Self-Assembly 10
1.2.4 Self-Assembling Kinetics: Supracolloidal Reaction 14
Acknowledgments 16
References 16
2 Developing Hybrid ModelingMethods to Simulate Self-Assembly in Polymer Nanocomposites 20
Xin Yong, Stephen C. Snow, Olga Kuksenok and Anna C. Balazs
2.1 Introduction 20
2.2 Methodology 21
2.2.1 Dissipative Particle Dynamics 21
2.2.2 Polymer Chains, Gels, and Nanoparticles 22
2.2.3 Radical PolymerizationModel 24
2.3 Results and Discussions 27
2.3.1 Modeling Bulk Polymerization Using FRP and ATRP 27
2.3.2 Modeling Regeneration of Severed Polymer Gels with Interfacially Active Nanorods 32
2.3.3 Modeling the Formation of Polymer-Clay Composite Gels 43
2.4 Conclusions 47
Acknowledgments 48
References 49
3 Theory and Simulation Studies of Self-Assembly of Helical Particles 53
Giorgio Cinacchi, Alberta Ferrarini, Elisa Frezza, Achille Giacometti and Hima Bindu Kolli
3.1 Introduction: Why Hard Helices? 53
3.2 Liquid Crystal Phases 55
3.3 Hard Helices: A MinimalModel 56
3.4 Numerical Simulations 57
3.4.1 Monte Carlo in Various Ensembles 57
3.4.1.1 Canonical Monte Carlo simulations (NVT-MC) 59
3.4.1.2 Isothermal-IsobaricMonte Carlo Simulations (NPT-MC) 59
3.4.2 Details on the MC Simulation of Hard Helices 59
3.5 Onsager (Density Functional) Theory 61
3.6 Onsager-LikeTheory for the Cholesteric and Screw-Nematic Phases 64
3.7 Order Parameters and Correlation Functions 67
3.7.1 Nematic Order Parameter 68
3.7.2 Screw-Like Nematic Order Parameter 68
3.7.3 Smectic Order Parameter 70
3.7.4 Hexatic Order Parameter 70
3.7.5 Parallel and Perpendicular Pair Correlation Functions 71
3.8 The Physical Origin of Cholesteric and Screw-Like Order 73
3.9 The Phase Diagram of Hard Helices 74
3.9.1 The Equation of State 75
3.9.2 Phase Diagrams in the Volume Fraction-Pitch Plane 76
3.9.2.1 Phase Diagram for r = 0.1 77
3.9.2.2 Phase Diagram for r = 0.2 78
3.9.2.3 Phase Diagram for r = 0.4 79
3.10 Helical (Bio)Polymers and Colloidal Particles 79
3.11 Conclusions and Perspectives 81
Acknowledgments 82
References 82
4 Self-Consistent Field Theory of Self-Assembling Multiblock Copolymers 85
Weihua Li and An-Chang Shi
4.1 Introduction 85
4.2 Theoretical Framework: Self-Consistent Field Theory of Block Copolymers 88
4.3 Numerical Methods of SCFT 90
4.3.1 Reciprocal-Space Method 90
4.3.2 Real-Space Method 93
4.3.3 Pseudo-SpectralMethod 95
4.3.4 Fourth-Order Pseudo-Spectral Method 98
4.4 Application of SCFT to Multiblock Copolymers 98
4.5 Conclusions and Discussions 104
Acknowledgments 107
References 107
5 Simulation Models of Soft Janus and Patchy Particles 109
Zhan-Wei Li, Zhao-Yan Sun and Zhong-Yuan Lu
5.1 Introduction 109
5.2 Soft Janus Particle Models 111
5.2.1 Soft One-Patch Janus Particle Model 111
List of Contributors xiii
Preface xvii
1 Theoretical Studies and Tailored Computer Simulations in Self-Assembling Systems: A General Aspect 1
Zihan Huang and Li-Tang Yan
1.1 Introduction 1
1.2 Emerging Self-Assembling Principles 3
1.2.1 Predictive Science and Rational Design of Complex Building Blocks 3
1.2.2 Entropy-Driven Ordering and Self-Assembly 5
1.2.3 Programmable Self-Assembly 10
1.2.4 Self-Assembling Kinetics: Supracolloidal Reaction 14
Acknowledgments 16
References 16
2 Developing Hybrid ModelingMethods to Simulate Self-Assembly in Polymer Nanocomposites 20
Xin Yong, Stephen C. Snow, Olga Kuksenok and Anna C. Balazs
2.1 Introduction 20
2.2 Methodology 21
2.2.1 Dissipative Particle Dynamics 21
2.2.2 Polymer Chains, Gels, and Nanoparticles 22
2.2.3 Radical PolymerizationModel 24
2.3 Results and Discussions 27
2.3.1 Modeling Bulk Polymerization Using FRP and ATRP 27
2.3.2 Modeling Regeneration of Severed Polymer Gels with Interfacially Active Nanorods 32
2.3.3 Modeling the Formation of Polymer-Clay Composite Gels 43
2.4 Conclusions 47
Acknowledgments 48
References 49
3 Theory and Simulation Studies of Self-Assembly of Helical Particles 53
Giorgio Cinacchi, Alberta Ferrarini, Elisa Frezza, Achille Giacometti and Hima Bindu Kolli
3.1 Introduction: Why Hard Helices? 53
3.2 Liquid Crystal Phases 55
3.3 Hard Helices: A MinimalModel 56
3.4 Numerical Simulations 57
3.4.1 Monte Carlo in Various Ensembles 57
3.4.1.1 Canonical Monte Carlo simulations (NVT-MC) 59
3.4.1.2 Isothermal-IsobaricMonte Carlo Simulations (NPT-MC) 59
3.4.2 Details on the MC Simulation of Hard Helices 59
3.5 Onsager (Density Functional) Theory 61
3.6 Onsager-LikeTheory for the Cholesteric and Screw-Nematic Phases 64
3.7 Order Parameters and Correlation Functions 67
3.7.1 Nematic Order Parameter 68
3.7.2 Screw-Like Nematic Order Parameter 68
3.7.3 Smectic Order Parameter 70
3.7.4 Hexatic Order Parameter 70
3.7.5 Parallel and Perpendicular Pair Correlation Functions 71
3.8 The Physical Origin of Cholesteric and Screw-Like Order 73
3.9 The Phase Diagram of Hard Helices 74
3.9.1 The Equation of State 75
3.9.2 Phase Diagrams in the Volume Fraction-Pitch Plane 76
3.9.2.1 Phase Diagram for r = 0.1 77
3.9.2.2 Phase Diagram for r = 0.2 78
3.9.2.3 Phase Diagram for r = 0.4 79
3.10 Helical (Bio)Polymers and Colloidal Particles 79
3.11 Conclusions and Perspectives 81
Acknowledgments 82
References 82
4 Self-Consistent Field Theory of Self-Assembling Multiblock Copolymers 85
Weihua Li and An-Chang Shi
4.1 Introduction 85
4.2 Theoretical Framework: Self-Consistent Field Theory of Block Copolymers 88
4.3 Numerical Methods of SCFT 90
4.3.1 Reciprocal-Space Method 90
4.3.2 Real-Space Method 93
4.3.3 Pseudo-SpectralMethod 95
4.3.4 Fourth-Order Pseudo-Spectral Method 98
4.4 Application of SCFT to Multiblock Copolymers 98
4.5 Conclusions and Discussions 104
Acknowledgments 107
References 107
5 Simulation Models of Soft Janus and Patchy Particles 109
Zhan-Wei Li, Zhao-Yan Sun and Zhong-Yuan Lu
5.1 Introduction 109
5.2 Soft Janus Particle Models 111
5.2.1 Soft One-Patch Janus Particle Model 111
Preface xvii
1 Theoretical Studies and Tailored Computer Simulations in Self-Assembling Systems: A General Aspect 1
Zihan Huang and Li-Tang Yan
1.1 Introduction 1
1.2 Emerging Self-Assembling Principles 3
1.2.1 Predictive Science and Rational Design of Complex Building Blocks 3
1.2.2 Entropy-Driven Ordering and Self-Assembly 5
1.2.3 Programmable Self-Assembly 10
1.2.4 Self-Assembling Kinetics: Supracolloidal Reaction 14
Acknowledgments 16
References 16
2 Developing Hybrid ModelingMethods to Simulate Self-Assembly in Polymer Nanocomposites 20
Xin Yong, Stephen C. Snow, Olga Kuksenok and Anna C. Balazs
2.1 Introduction 20
2.2 Methodology 21
2.2.1 Dissipative Particle Dynamics 21
2.2.2 Polymer Chains, Gels, and Nanoparticles 22
2.2.3 Radical PolymerizationModel 24
2.3 Results and Discussions 27
2.3.1 Modeling Bulk Polymerization Using FRP and ATRP 27
2.3.2 Modeling Regeneration of Severed Polymer Gels with Interfacially Active Nanorods 32
2.3.3 Modeling the Formation of Polymer-Clay Composite Gels 43
2.4 Conclusions 47
Acknowledgments 48
References 49
3 Theory and Simulation Studies of Self-Assembly of Helical Particles 53
Giorgio Cinacchi, Alberta Ferrarini, Elisa Frezza, Achille Giacometti and Hima Bindu Kolli
3.1 Introduction: Why Hard Helices? 53
3.2 Liquid Crystal Phases 55
3.3 Hard Helices: A MinimalModel 56
3.4 Numerical Simulations 57
3.4.1 Monte Carlo in Various Ensembles 57
3.4.1.1 Canonical Monte Carlo simulations (NVT-MC) 59
3.4.1.2 Isothermal-IsobaricMonte Carlo Simulations (NPT-MC) 59
3.4.2 Details on the MC Simulation of Hard Helices 59
3.5 Onsager (Density Functional) Theory 61
3.6 Onsager-LikeTheory for the Cholesteric and Screw-Nematic Phases 64
3.7 Order Parameters and Correlation Functions 67
3.7.1 Nematic Order Parameter 68
3.7.2 Screw-Like Nematic Order Parameter 68
3.7.3 Smectic Order Parameter 70
3.7.4 Hexatic Order Parameter 70
3.7.5 Parallel and Perpendicular Pair Correlation Functions 71
3.8 The Physical Origin of Cholesteric and Screw-Like Order 73
3.9 The Phase Diagram of Hard Helices 74
3.9.1 The Equation of State 75
3.9.2 Phase Diagrams in the Volume Fraction-Pitch Plane 76
3.9.2.1 Phase Diagram for r = 0.1 77
3.9.2.2 Phase Diagram for r = 0.2 78
3.9.2.3 Phase Diagram for r = 0.4 79
3.10 Helical (Bio)Polymers and Colloidal Particles 79
3.11 Conclusions and Perspectives 81
Acknowledgments 82
References 82
4 Self-Consistent Field Theory of Self-Assembling Multiblock Copolymers 85
Weihua Li and An-Chang Shi
4.1 Introduction 85
4.2 Theoretical Framework: Self-Consistent Field Theory of Block Copolymers 88
4.3 Numerical Methods of SCFT 90
4.3.1 Reciprocal-Space Method 90
4.3.2 Real-Space Method 93
4.3.3 Pseudo-SpectralMethod 95
4.3.4 Fourth-Order Pseudo-Spectral Method 98
4.4 Application of SCFT to Multiblock Copolymers 98
4.5 Conclusions and Discussions 104
Acknowledgments 107
References 107
5 Simulation Models of Soft Janus and Patchy Particles 109
Zhan-Wei Li, Zhao-Yan Sun and Zhong-Yuan Lu
5.1 Introduction 109
5.2 Soft Janus Particle Models 111
5.2.1 Soft One-Patch Janus Particle Model 111