This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific…mehr
This publication is a compilation of papers presented at the Semiconductor Device Reliabi lity Workshop sponsored by the NATO International Scientific Exchange Program. The Workshop was held in Crete, Greece from June 4 to June 9, 1989. The objective of the Workshop was to review and to further explore advances in the field of semiconductor reliability through invited paper presentations and discussions. The technical emphasis was on quality assurance and reliability of optoelectronic and high speed semiconductor devices. The primary support for the meeting was provided by the Scientific Affairs Division of NATO. We are indebted to NATO for their support and to Dr. Craig Sinclair, who admin isters this program. The chapters of this book follow the format and order of the sessions of the meeting. Thirty-six papers were presented and discussed during the five-day Workshop. In addi tion, two panel sessions were held, with audience participation, where the particularly controversial topics of bum-in and reliability modeling and prediction methods were dis cussed. A brief review of these sessions is presented in this book.Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
I. Reliability Testing.- 1.1 The Influence of Temperature and Use Conditions on the Degradation of LED Parameters.- 1.2 An Historical Perspective of GaAs MESFET Reliability Work at Plessey.- 1.3 Screening and Burn-In: Application to Optoelectronic Device Selection for High-Reliability S280 Optical Submarine Repeaters.- 1.4 Assuring the Reliability of Lasers Intended for the Uncontrolled Environment.- 1.5 Component Burn-In: The Changing Attitude.- II. Reliability Models and Failure Mechanisms.- 2.1 Statistical Models for Device Reliability; An Overview.- 2.2 Computer-Aided Analysis of Integrated Circuit Reliability.- 2.3 Reliability Assessment of CMOS ASIC Designs.- 2.4 Models Used in Undersea Fibre Optic Systems Reliability Prediction.- III. Failure Analysis.- 3.1. Failure Analysis: The Challenge.- 3.2 Gate Metallisation Systems for High Reliability GaAs MESFET Transistors.- 3.3 Reliability Limitations of Metal Electrodes on GaAs.- 3.4 Failure Mechanisms of GaAs MESFETs and Low-Noise HEMTs.- 3.5 Metal Contact Degradation on III-V Compound Semiconductors.- 3.6 Nuclear Methods in the Characterization of Semiconductor Reliability.- IV. Opto-Electronic Reliability (I).- 4.1 A Review of the Reliability of III-V Opto-electronic Components.- 4.2 Considerations on the Degradation of DFB Lasers.- 4.3 InP-Based 4 × 4 Optical Switch Package Qualification and Reliability.- 4.4 Modelling the Effects of Degradation on the Spectral Stability of Distributed Feedback Lasers.- V. Opto-Electronic Reliability (II).- 5.1 Optoelectronic Component Reliability and Failure Analysis.- 5.2 Temperature Cycling Tests of Laser Modules.- 5.3 An Experimental and Theoretical Investigation of Degradation in Semiconductor Lasers Resulting from Electrostatic Discharge.- 5.4 Reliability Testing ofPlanar InGaAs Avalanche Photodiodes.- VI. Compound Semiconductor Reliability.- 6.1 Status of Compound Semiconductor Device Reliability.- 6.2. Investigation into Molecular Beam Epitaxy-Grown FETs and HEMTs.- 6.3 Reliability of GaAs MESFETs.- 6.4 Hydrogen Effects on Reliability of GaAs MMICs.- 6.5 Temperature Distribution on GaAs MESFETs: Thermal Modeling and Experimental Results.- VII. High-Speed Circuit Reliability.- 7.1 High Speed IC Reliability: Concerns and Advances.- 7.2 Reliability of short channel silicon SOI VLSI Devices and Circuits.- 7.3 Special Reliability Issues and Radiation Effects of High Speed ICs.- 7.4 Reliability of High Speed HEMT Integrated Circuits and Multi-2DEG Structures.- 7.5 AlGaAs as a Dielectric on GaAs for Digital IC'S: Problems and Solutions.- Appendix A. Reliability Stress Screening.- Appendix B. Lifetime Extrapolation and Standardization of Tests.
I. Reliability Testing.- 1.1 The Influence of Temperature and Use Conditions on the Degradation of LED Parameters.- 1.2 An Historical Perspective of GaAs MESFET Reliability Work at Plessey.- 1.3 Screening and Burn-In: Application to Optoelectronic Device Selection for High-Reliability S280 Optical Submarine Repeaters.- 1.4 Assuring the Reliability of Lasers Intended for the Uncontrolled Environment.- 1.5 Component Burn-In: The Changing Attitude.- II. Reliability Models and Failure Mechanisms.- 2.1 Statistical Models for Device Reliability; An Overview.- 2.2 Computer-Aided Analysis of Integrated Circuit Reliability.- 2.3 Reliability Assessment of CMOS ASIC Designs.- 2.4 Models Used in Undersea Fibre Optic Systems Reliability Prediction.- III. Failure Analysis.- 3.1. Failure Analysis: The Challenge.- 3.2 Gate Metallisation Systems for High Reliability GaAs MESFET Transistors.- 3.3 Reliability Limitations of Metal Electrodes on GaAs.- 3.4 Failure Mechanisms of GaAs MESFETs and Low-Noise HEMTs.- 3.5 Metal Contact Degradation on III-V Compound Semiconductors.- 3.6 Nuclear Methods in the Characterization of Semiconductor Reliability.- IV. Opto-Electronic Reliability (I).- 4.1 A Review of the Reliability of III-V Opto-electronic Components.- 4.2 Considerations on the Degradation of DFB Lasers.- 4.3 InP-Based 4 × 4 Optical Switch Package Qualification and Reliability.- 4.4 Modelling the Effects of Degradation on the Spectral Stability of Distributed Feedback Lasers.- V. Opto-Electronic Reliability (II).- 5.1 Optoelectronic Component Reliability and Failure Analysis.- 5.2 Temperature Cycling Tests of Laser Modules.- 5.3 An Experimental and Theoretical Investigation of Degradation in Semiconductor Lasers Resulting from Electrostatic Discharge.- 5.4 Reliability Testing ofPlanar InGaAs Avalanche Photodiodes.- VI. Compound Semiconductor Reliability.- 6.1 Status of Compound Semiconductor Device Reliability.- 6.2. Investigation into Molecular Beam Epitaxy-Grown FETs and HEMTs.- 6.3 Reliability of GaAs MESFETs.- 6.4 Hydrogen Effects on Reliability of GaAs MMICs.- 6.5 Temperature Distribution on GaAs MESFETs: Thermal Modeling and Experimental Results.- VII. High-Speed Circuit Reliability.- 7.1 High Speed IC Reliability: Concerns and Advances.- 7.2 Reliability of short channel silicon SOI VLSI Devices and Circuits.- 7.3 Special Reliability Issues and Radiation Effects of High Speed ICs.- 7.4 Reliability of High Speed HEMT Integrated Circuits and Multi-2DEG Structures.- 7.5 AlGaAs as a Dielectric on GaAs for Digital IC'S: Problems and Solutions.- Appendix A. Reliability Stress Screening.- Appendix B. Lifetime Extrapolation and Standardization of Tests.
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826