49,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
0 °P sammeln
  • Broschiertes Buch

Within the context of the Wedderburn-Malcev theorem a radical complement exists and all complements are conjugated. The main topics of this work are to analyze the Determination of a (all) radical complements, the representation of an element as the sum of a nilpotent and fully separable element and the compatibility of the Wedderburn-Malcev theorem with derived structures. Answers are presented in details for commutative and solvable associative algebras. Within the analysis the set of fully-separable elements and the generalized Jordan decomposition are of special interest. We provide…mehr

Produktbeschreibung
Within the context of the Wedderburn-Malcev theorem a radical complement exists and all complements are conjugated. The main topics of this work are to analyze the Determination of a (all) radical complements, the representation of an element as the sum of a nilpotent and fully separable element and the compatibility of the Wedderburn-Malcev theorem with derived structures. Answers are presented in details for commutative and solvable associative algebras. Within the analysis the set of fully-separable elements and the generalized Jordan decomposition are of special interest. We provide examples based on generalized quaternion algebras, group algebras and algebras of traingular matrices over a field. The results (and also the theorem of Wedderburn-Malcev and Taft) are transferred to non-unitary algebras by using the star-composition and the adjunction of an unit. Within the App endix we present proofs for the Wedderburn-Malcev theorem for unitary algebras, for Taft's theorem on G-invariant radical complements for unitary algebras and for a theorem of Bauer concerning solvable unit groups of associative algebras.
Autorenporträt
Sven Bodo Wirsing was born in 1975 in Neumunster. After graduating from high school at KKS in Itzehoe (with a focus on mathematics and physics), he studied mathematics with a minor in business administration (especially logistics) at CAU university in Kiel. He did his doctorate in 2005 on group and algebra theory. During his years of study in Kiel he gained experience in the analysis of interdisciplinary processes, which are reflected in different disciplines of algebra, such as group theory, representation theory, theory of Lie and associative algebras. From this experience, he also studied and analyzed the subject matter of the present work. Since the end of his doctorate, Dr. Wirsing has been working as a senior IT consultant for logistics processes at a renowned IT consulting firm, where he is responsible for logistics optimization and maintenance. Since 2012, he has published several books on algebras.