146,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials provides an exhaustive overview of the mechanics, kinetics and physio-chemical behavior caused by shock-induced reaction and shock compression on multifunctional energetic structural materials (MESMs). The book covers foundational knowledge on shock waves and Equation of State (EOS), shock parameters, reaction kinetics, impedance matching, and more. In addition, it looks at more advanced subjects such as experimental analysis methods, numerical modeling techniques (from quasi-static to high-strain rates,…mehr

Produktbeschreibung
Shock Compression and Chemical Reaction of Multifunctional Energetic Structural Materials provides an exhaustive overview of the mechanics, kinetics and physio-chemical behavior caused by shock-induced reaction and shock compression on multifunctional energetic structural materials (MESMs). The book covers foundational knowledge on shock waves and Equation of State (EOS), shock parameters, reaction kinetics, impedance matching, and more. In addition, it looks at more advanced subjects such as experimental analysis methods, numerical modeling techniques (from quasi-static to high-strain rates, including void collapse models), how EOS changes when reaction and detonation are involved, and more.

Final chapters cover how to obtain EOS curves from experiments and various testing methods and numerical models for non-reactive porous solids and particulate composites, including 1-D reactive flow models. Flyer plate impact experiments are also discussed, as are the applications of hydrocodes and Lagrangian-framework-based methods.
Autorenporträt
Xianfeng Zhang is a Professor at the School of Mechanical Engineering in Nanjing University of Science and Technology. Following his PhD (Nanjing University, 2005), Dr. Zhang worked at the University of Science and Technology of China, Fraunhofer Institute of Mechanics of Materials in Germany, and Nanyang Technology University in Singapore as a postdoctoral researcher. His research interest is focused on dynamic behaviour of materials such as energetic structural materials, ceramics, concrete, rocks, and new alloy materials. He is a committee member of the China Ordnance Society and Chinese Society for Rock Mechanics and Engineering. He is also a member of the editorial board of the Chinese Journal of Ordnance Equipment Engineering. He has published over 90 research papers in international journals and conference proceedings

Dr. Wei Xiong is a lecturer at School of Mechanical Engineering, Nanjing University of Science and Technology. She received her PhD in Nanjing University of Science and Technology in 2019. She has been to the University of Liverpool in 2016 as a one-year visiting student, sponsored by Chinese Scholarship Council. She has so far worked on the dynamic behaviors and applications of Energetic Structural Materials for about 8 years. Her work is now supported by National Natural Science Foundation of China. She has published 8 research papers in international journals and conference proceedings.