Kniga posvyashchena geometricheskomu opisaniyu uzkikh puchkov sveta i drugikh protsessov v dlinnykh trubkakh. V nastoyashchey rabote opisan simmetrichnyy (simmetrichno pronumerovannyy) treugol'nik Paskalya i predlozhena novaya naglyadnaya model' "nelineynyy arifmeticheskiy parallelepiped", dlya chislennogo opisaniya "binarnoy luchevoy sistemy" i dlya illyustratsii protsessa raspredeleniya vetvyashcheysya sistemy paraksial'nykh (gaussovykh) puchkov i volnoobraznykh traektoriy. Predlagaemaya novaya model' mozhet byt' polezna dlya priblizhennoy i formal'noy, no naglyadnoy geometricheskoy interpretatsii protsessov dvizheniya chastits i voln v dlinnykh trubkakh. K takim protsessam mozhno otnesti, naprimer, rasprostranenie sveta v lazerakh, nakhozhdenie chastitsy v beskonechno glubokoy potentsial'noy yame (vklyuchaya novuyu geometricheskuyu interpretatsiyu spina chastitsy), laminarnoe i turbulentnoe techenie zhidkosti po trubam i t. p. V knige privedeno bol'shoe kolichestvo risunkov i grafikov, a takzhe tablits s chislennymi raschetami, vypolnennymi v programme Excel. Kniga prednaznachena vsem, kto interesuetsya novymi naglyadnymi geometricheskimi issledovaniyami v oblasti fiziki i optiki.