Roberto Mariano / Til Schuermann / J. Weeks (eds.)
Simulation-Based Inference in Econometrics
Methods and Applications
Herausgeber: Mariano, Roberto; Weeks, Melvyn J.; Schuermann, Til
Roberto Mariano / Til Schuermann / J. Weeks (eds.)
Simulation-Based Inference in Econometrics
Methods and Applications
Herausgeber: Mariano, Roberto; Weeks, Melvyn J.; Schuermann, Til
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An overview of the techniques and practices involved in simulation-based inference.
Andere Kunden interessierten sich auch für
- Donald W. K. Andrews / James H. Stock (eds.)Identification and Inference for Econometric Models83,99 €
- Arnold Zellner / A. Keuzenkamp / Michael McAleer (eds.)Simplicity, Inference and Modelling115,99 €
- Halbert WhiteEstimation, Inference and Specification Analysis73,99 €
- Aris SpanosProbability Theory and Statistical Inference80,99 €
- Bent Jesper ChristensenEconomic Modeling and Inference96,99 €
- Vikram DayalDemystifying Causal Inference52,99 €
- Apostolos Serletis / William A. Barnett (eds.)Functional Structure Inference239,99 €
-
-
-
An overview of the techniques and practices involved in simulation-based inference.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 476
- Erscheinungstermin: 25. März 2004
- Englisch
- Abmessung: 235mm x 157mm x 32mm
- Gewicht: 917g
- ISBN-13: 9780521591126
- ISBN-10: 0521591120
- Artikelnr.: 22399735
- Verlag: Cambridge University Press
- Seitenzahl: 476
- Erscheinungstermin: 25. März 2004
- Englisch
- Abmessung: 235mm x 157mm x 32mm
- Gewicht: 917g
- ISBN-13: 9780521591126
- ISBN-10: 0521591120
- Artikelnr.: 22399735
Part I. Simulation-Based Inference in Econometrics, Methods and
Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in
econometrics: motivation and methods Steven Stern; Part II.
Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte
Carlo integration: an application to dynamic latent variable models
Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum
simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for
dynamic discrete choice models without the need for dynamic programming
John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial
probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series
Methods and Models: Introduction Til Schuermann; 7. Simulated moment
methods for empirical equivalent martingale measures Bent Jesper
Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation
of observation-driven econometric models Francis X. Diebold and Til
Schuermann; 9. Simulation-based inference in non-linear state space models:
application to testing the permanent income hypothesis Roberto S. Mariano
and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models
in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based
Bayesian inference for economic time series John Geweke; Part IV. Other
Areas of Application and Technical Issues: Introduction Roberto S. Mariano;
12. A comparison of computational methods for hierarchical methods in
customer survey questionnaire data Eric T. Bradlow; 13. Calibration by
simulation for small sample bias correction Christian Gourieroux, Eric
Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear,
latent factor aggregate production function Lee Ohanian, Giovanni L.
Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated
general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation
variance reduction for bootstrapping Bryan W. Brown; Index.
Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in
econometrics: motivation and methods Steven Stern; Part II.
Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte
Carlo integration: an application to dynamic latent variable models
Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum
simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for
dynamic discrete choice models without the need for dynamic programming
John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial
probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series
Methods and Models: Introduction Til Schuermann; 7. Simulated moment
methods for empirical equivalent martingale measures Bent Jesper
Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation
of observation-driven econometric models Francis X. Diebold and Til
Schuermann; 9. Simulation-based inference in non-linear state space models:
application to testing the permanent income hypothesis Roberto S. Mariano
and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models
in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based
Bayesian inference for economic time series John Geweke; Part IV. Other
Areas of Application and Technical Issues: Introduction Roberto S. Mariano;
12. A comparison of computational methods for hierarchical methods in
customer survey questionnaire data Eric T. Bradlow; 13. Calibration by
simulation for small sample bias correction Christian Gourieroux, Eric
Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear,
latent factor aggregate production function Lee Ohanian, Giovanni L.
Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated
general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation
variance reduction for bootstrapping Bryan W. Brown; Index.
Part I. Simulation-Based Inference in Econometrics, Methods and
Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in
econometrics: motivation and methods Steven Stern; Part II.
Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte
Carlo integration: an application to dynamic latent variable models
Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum
simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for
dynamic discrete choice models without the need for dynamic programming
John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial
probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series
Methods and Models: Introduction Til Schuermann; 7. Simulated moment
methods for empirical equivalent martingale measures Bent Jesper
Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation
of observation-driven econometric models Francis X. Diebold and Til
Schuermann; 9. Simulation-based inference in non-linear state space models:
application to testing the permanent income hypothesis Roberto S. Mariano
and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models
in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based
Bayesian inference for economic time series John Geweke; Part IV. Other
Areas of Application and Technical Issues: Introduction Roberto S. Mariano;
12. A comparison of computational methods for hierarchical methods in
customer survey questionnaire data Eric T. Bradlow; 13. Calibration by
simulation for small sample bias correction Christian Gourieroux, Eric
Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear,
latent factor aggregate production function Lee Ohanian, Giovanni L.
Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated
general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation
variance reduction for bootstrapping Bryan W. Brown; Index.
Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in
econometrics: motivation and methods Steven Stern; Part II.
Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte
Carlo integration: an application to dynamic latent variable models
Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum
simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for
dynamic discrete choice models without the need for dynamic programming
John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial
probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series
Methods and Models: Introduction Til Schuermann; 7. Simulated moment
methods for empirical equivalent martingale measures Bent Jesper
Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation
of observation-driven econometric models Francis X. Diebold and Til
Schuermann; 9. Simulation-based inference in non-linear state space models:
application to testing the permanent income hypothesis Roberto S. Mariano
and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models
in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based
Bayesian inference for economic time series John Geweke; Part IV. Other
Areas of Application and Technical Issues: Introduction Roberto S. Mariano;
12. A comparison of computational methods for hierarchical methods in
customer survey questionnaire data Eric T. Bradlow; 13. Calibration by
simulation for small sample bias correction Christian Gourieroux, Eric
Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear,
latent factor aggregate production function Lee Ohanian, Giovanni L.
Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated
general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation
variance reduction for bootstrapping Bryan W. Brown; Index.