Roberto Mariano, Til Schuermann, Melvyn J. Weeks
Simulation-Based Inference in Econometrics
Methods and Applications
Roberto Mariano, Til Schuermann, Melvyn J. Weeks
Simulation-Based Inference in Econometrics
Methods and Applications
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
An overview of the techniques and practices involved in simulation-based inference.
Andere Kunden interessierten sich auch für
- Marc NerloveEssays in Panel Data Econometrics78,99 €
- G. S. MaddalaLimited-Dependent and Qualitative Variables in Econometrics44,99 €
- Hugo A. KeuzenkampProbability, Econometrics and Truth39,99 €
- M. Kreps / F. Wallis (eds.)Advances in Economics and Econometrics34,99 €
- MarriottApplications of Differential Geometry to Econometrics37,99 €
- Adrian PaganNonparametric Econometrics65,99 €
- Halbert WhiteEstimation, Inference and Specification Analysis39,99 €
-
-
-
An overview of the techniques and practices involved in simulation-based inference.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 476
- Erscheinungstermin: 30. Juni 2008
- Englisch
- Abmessung: 229mm x 152mm x 28mm
- Gewicht: 766g
- ISBN-13: 9780521088022
- ISBN-10: 052108802X
- Artikelnr.: 25006458
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Verlag: Cambridge University Press
- Seitenzahl: 476
- Erscheinungstermin: 30. Juni 2008
- Englisch
- Abmessung: 229mm x 152mm x 28mm
- Gewicht: 766g
- ISBN-13: 9780521088022
- ISBN-10: 052108802X
- Artikelnr.: 25006458
- Herstellerkennzeichnung
- Produktsicherheitsverantwortliche/r
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Part I. Simulation-Based Inference in Econometrics, Methods and
Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in
econometrics: motivation and methods Steven Stern; Part II.
Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte
Carlo integration: an application to dynamic latent variable models
Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum
simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for
dynamic discrete choice models without the need for dynamic programming
John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial
probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series
Methods and Models: Introduction Til Schuermann; 7. Simulated moment
methods for empirical equivalent martingale measures Bent Jesper
Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation
of observation-driven econometric models Francis X. Diebold and Til
Schuermann; 9. Simulation-based inference in non-linear state space models:
application to testing the permanent income hypothesis Roberto S. Mariano
and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models
in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based
Bayesian inference for economic time series John Geweke; Part IV. Other
Areas of Application and Technical Issues: Introduction Roberto S. Mariano;
12. A comparison of computational methods for hierarchical methods in
customer survey questionnaire data Eric T. Bradlow; 13. Calibration by
simulation for small sample bias correction Christian Gourieroux, Eric
Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear,
latent factor aggregate production function Lee Ohanian, Giovanni L.
Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated
general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation
variance reduction for bootstrapping Bryan W. Brown; Index.
Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in
econometrics: motivation and methods Steven Stern; Part II.
Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte
Carlo integration: an application to dynamic latent variable models
Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum
simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for
dynamic discrete choice models without the need for dynamic programming
John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial
probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series
Methods and Models: Introduction Til Schuermann; 7. Simulated moment
methods for empirical equivalent martingale measures Bent Jesper
Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation
of observation-driven econometric models Francis X. Diebold and Til
Schuermann; 9. Simulation-based inference in non-linear state space models:
application to testing the permanent income hypothesis Roberto S. Mariano
and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models
in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based
Bayesian inference for economic time series John Geweke; Part IV. Other
Areas of Application and Technical Issues: Introduction Roberto S. Mariano;
12. A comparison of computational methods for hierarchical methods in
customer survey questionnaire data Eric T. Bradlow; 13. Calibration by
simulation for small sample bias correction Christian Gourieroux, Eric
Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear,
latent factor aggregate production function Lee Ohanian, Giovanni L.
Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated
general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation
variance reduction for bootstrapping Bryan W. Brown; Index.
Part I. Simulation-Based Inference in Econometrics, Methods and
Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in
econometrics: motivation and methods Steven Stern; Part II.
Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte
Carlo integration: an application to dynamic latent variable models
Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum
simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for
dynamic discrete choice models without the need for dynamic programming
John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial
probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series
Methods and Models: Introduction Til Schuermann; 7. Simulated moment
methods for empirical equivalent martingale measures Bent Jesper
Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation
of observation-driven econometric models Francis X. Diebold and Til
Schuermann; 9. Simulation-based inference in non-linear state space models:
application to testing the permanent income hypothesis Roberto S. Mariano
and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models
in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based
Bayesian inference for economic time series John Geweke; Part IV. Other
Areas of Application and Technical Issues: Introduction Roberto S. Mariano;
12. A comparison of computational methods for hierarchical methods in
customer survey questionnaire data Eric T. Bradlow; 13. Calibration by
simulation for small sample bias correction Christian Gourieroux, Eric
Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear,
latent factor aggregate production function Lee Ohanian, Giovanni L.
Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated
general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation
variance reduction for bootstrapping Bryan W. Brown; Index.
Applications: Introduction Melvyn Weeks; 1. Simulation-based inference in
econometrics: motivation and methods Steven Stern; Part II.
Microeconometric Methods: Introduction Melvyn Weeks; 2. Accelerated Monte
Carlo integration: an application to dynamic latent variable models
Jean-Francois Richard and Wei Zhang; 3. Some practical issues in maximum
simulated likelihood Vassillis A. Hajivassiliou; 4. Bayesian inference for
dynamic discrete choice models without the need for dynamic programming
John Geweke and Miochael Keane; 6. Bayesian analysis of the multinomial
probit model Peter E. Rossi and Robert E. McCulloch; Part III. Time Series
Methods and Models: Introduction Til Schuermann; 7. Simulated moment
methods for empirical equivalent martingale measures Bent Jesper
Christensen and Nicholas M. Kiefer; 8. Exact maximum likelihood estimation
of observation-driven econometric models Francis X. Diebold and Til
Schuermann; 9. Simulation-based inference in non-linear state space models:
application to testing the permanent income hypothesis Roberto S. Mariano
and Hisashi Tanizaki; 10. Simulation-based estimation of some factor models
in econometrics Vance L. Martin and Adrian R. Pagan; 11. Simulation-based
Bayesian inference for economic time series John Geweke; Part IV. Other
Areas of Application and Technical Issues: Introduction Roberto S. Mariano;
12. A comparison of computational methods for hierarchical methods in
customer survey questionnaire data Eric T. Bradlow; 13. Calibration by
simulation for small sample bias correction Christian Gourieroux, Eric
Renault and Nizar Touzi; 14. Simulation-based estimation of a nonlinear,
latent factor aggregate production function Lee Ohanian, Giovanni L.
Violante, Per Krusell, Jose-Victor Rios-Rull; 15. Testing calibrated
general equilibrium models Fabio Canova and Eva Ortega; 16. Simulation
variance reduction for bootstrapping Bryan W. Brown; Index.