26,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

A biologically-inspired micropropulsion method is studied via a series of CFD models managing time-irreversible inextensible wave propagation in a viscous medium. First, pump effect of a fully submerged and anchored thin-film with time-irreversible plane-wave propagation is analyzed by means of resultant channel flow, hydraulic power consumption, and efficiency while performing in a microchannel. Next, propulsion velocity, power consumption and hydrodynamic efficiency of a fully submerged and untethered bio-inspired microswimmer, employing single wave-propagating slender tail, are analyzed…mehr

Produktbeschreibung
A biologically-inspired micropropulsion method is studied via a series of CFD models managing time-irreversible inextensible wave propagation in a viscous medium. First, pump effect of a fully submerged and anchored thin-film with time-irreversible plane-wave propagation is analyzed by means of resultant channel flow, hydraulic power consumption, and efficiency while performing in a microchannel. Next, propulsion velocity, power consumption and hydrodynamic efficiency of a fully submerged and untethered bio-inspired microswimmer, employing single wave-propagating slender tail, are analyzed with respect to parameterized design variables. All models are governed by dimensionless incompressible Navier-Stokes equations subject to conservation of mass and incorporated with the arbitrary Lagrangian-Eulerian mesh scheme, simultaneously handling moving and stationary boundaries. The resultant rigid-body motion of the swimmer is modeled via incorporating interactions between surrounding viscous fluid and swimmer surface with the rigid-body kinematics, in 3D. Numerical results are compared with the asymptotical results to analytical studies, carried out earlier, based on 2D flow assumptions.
Autorenporträt
Dr. Ahmet Fatih Tabak is a Mechatronics Engineer (BSc 2005, MSc 2007, PhD 2012, Sabanci University) specialized in fluid-structure interaction associated with bio-inspired and bio-mimicking robots. He was faculty at Istanbul Commerce University, and is currently a post-doctoral fellow at the Max-Planck Institute for Intelligent Systems, Stuttgart.