125,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
63 °P sammeln
  • Gebundenes Buch

The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed…mehr

Produktbeschreibung
The book provides design engineers an elemental understanding of the variables that influence pressure drop and heat transfer in plain and micro-fin tubes to thermal systems using liquid single-phase flow in different industrial applications. It also provides design engineers using gas-liquid, two-phase flow in different industrial applications the necessary fundamentals of the two-phase flow variables. The author and his colleagues were the first to determine experimentally the very important relationship between inlet geometry and transition. On the basis of their results, they developed practical and easy to use correlations for the isothermal and non-isothermal friction factor (pressure drop) and heat transfer coefficient (Nusselt number) in the transition region as well as the laminar and turbulent flow regions for different inlet configurations and fin geometry. This work presented herein provides the thermal systems design engineer the necessary design tools. The authorfurther presents a succinct review of the flow patterns, void fraction, pressure drop and non-boiling heat transfer phenomenon and recommends some of the well scrutinized modeling techniques.

Autorenporträt
Afshin J. Ghajar is Regents Professor and John Brammer Professor in the School of Mechanical Engineering and Aerospace Engineering at Oklahoma State University.  He is a Fellow of the American Society of Mechanical Engineers (ASME) and the American Society of Thermal and Fluids Engineers (ASTFE).  He is a Registered Professional Engineer in the State of Oklahoma. Professor Ghajar has received countless teaching/service awards, such as the 75th Anniversary Medal of the ASME Heat Transfer Division, the ASME ICNMM Outstanding Leadership Award, and the Donald Q. Kern Award, among others.  Professor Ghajar's research work has resulted in over 250 publications including professional journals, reports, books, peer-reviewed conference papers or symposium proceedings.  His research achievements have also been documented by a large number of presentations as well keynote and invited lectures all over the world.  As of 2021, his research hasbeen cited more than 8000 times.