105,50 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
0 °P sammeln
  • Gebundenes Buch

Many physical problems that are usually solved by differential equation methods can be solved more effectively by integral equation methods. This is the first book to focus exclusively on singular integral equations and on the distributional solutions of these equations. With extensive examples and problem sets, the book gives a thorough introduction to the field. It progresses systematically from basic concepts to two-dimensional problems.
1 Reference Material.- 1.1 Introduction.- 1.2 Singular Integral Equations.- 1.3 Improper Integrals.- 1.3.1 The Gamma function.- 1.3.2 The Beta
…mehr

Produktbeschreibung
Many physical problems that are usually solved by differential equation methods can be solved more effectively by integral equation methods. This is the first book to focus exclusively on singular integral equations and on the distributional solutions of these equations. With extensive examples and problem sets, the book gives a thorough introduction to the field. It progresses systematically from basic concepts to two-dimensional problems.
1 Reference Material.- 1.1 Introduction.- 1.2 Singular Integral Equations.- 1.3 Improper Integrals.- 1.3.1 The Gamma function.- 1.3.2 The Beta function.- 1.3.3 Another important improper integral.- 1.3.4 A few integral identities.- 1.4 The Lebesgue Integral.- 1.5 Cauchy Principal Value for Integrals.- 1.6 The Hadamard Finite Part.- 1.7 Spaces of Functions and Distributions.- 1.8 Integral Transform Methods.- 1.8.1 Fourier transform.- 1.8.2 Laplace transform.- 1.9 Bibliographical Notes.- 2 Abel's and Related Integral Equations.- 2.1 Introduction.- 2.2 Abel's Equation.- 2.3 Related Integral Equations.- 2.4 The equation $$\int_{0}^{s} {{{{(s - t)}}^{\beta }}g(t)dt = f(s), \Re e \beta > - 1}$$.- 2.5 Path of Integration in the Complex Plane.- 2.6 The Equation $$\int_{{{{C}_{{a\xi }}}}} {\frac{{g(z)dz}}{{{{{(z - \xi )}}^{\nu }}}}} + k\int_{{{{C}_{{\xi b}}}}} {\frac{{g(z)dz}}{{{{{(\xi - z)}}^{\nu }}}}} = f(\xi )$$.- 2.7 Equations on a Closed Curve.- 2.8 Examples.- 2.9 Bibliographical Notes.- 2.10 Problems.- 3 Cauchy Type Integral Equations.- 3.1 Introduction.- 3.2 Cauchy Type Equation of the First Kind.- 3.3 An Alternative Approach.- 3.4 Cauchy Type Equations of the Second Kind.- 3.5 Cauchy Type Equations on a Closed Contour.- 3.6 Analytic Representation of Functions.- 3.7 Sectionally Analytic Functions (z?a)n?v(z?b)m+v.- 3.8 Cauchy's Integral Equation on an Open Contour.- 3.9 Disjoint Contours.- 3.10 Contours That Extend to Infinity.- 3.11 The Hilbert Kernel.- 3.12 The Hilbert Equation.- 3.13 Bibliographical Notes.- 3.14 Problems.- 4 Carleman Type Integral Equations.- 4.1 Introduction.- 4.2 Carleman Type Equation over a Real Interval.- 4.3 The Riemann-Hilbert Problem.- 4.4 Carleman Type Equations on a Closed Contour.- 4.5 Non-Normal Problems.- 4.6 A Factorization Procedure.- 4.7 An Operational Approach.- 4.8 Solution of a Related Integral Equation.- 4.9 Bibliographical Notes.- 4.10 Problems.- 5 Distributional Solutions of Singular Integral Equations.- 5.1 Introduction.- 5.2 Spaces of Generalized Functions.- 5.3 Generalized Solution of the Abel Equation.- 5.4 Integral Equations Related to Abel's Equation.- 5.5 The Fractional Integration Operators .- 5.6 The Cauchy Integral Equation over a Finite Interval.- 5.7 Analytic Representation of Distributions of ?'[a, b].- 5.8 Boundary Problems in A[a, b].- 5.9 Disjoint Intervals.- 5.9.1 The problem [RjF]j =hj.- 5.9.2 The equation A1?1(0F) + A2?2(F) = G.- 5.10 Equations Involving Periodic Distributions.- 5.11 Bibliographical Notes.- 5.12 Problems.- 6 Distributional Equations on the Whole Line.- 6.1 Introduction.- 6.2 Preliminaries.- 6.3 The Hilbert Transform of Distributions.- 6.4 Analytic Representation.- 6.5 Asymptotic Estimates.- 6.6 Distributional Solutions of Integral Equations.- 6.7 Non-Normal Equations.- 6.8 Bibliographical Notes.- 6.9 Problems.- 7 Integral Equations with Logarithmic Kernels.- 7.1 Introduction.- 7.2 Expansion of the Kernel In x-y.- 7.3 The Equation $$\int_{a}^{b} {\ln } \left {x - y} \rightg(y)dy = f(x)$$.- 7.4 Two Related Operators.- 7.5 Generalized Solutions of Equations with Logarithmic Kernels.- 7.6 The Operator $$\int_{a}^{b} {(P(x - y)\ln \left {x - y} \right + Q(x, y))g(y)dy}$$.- 7.7 Disjoint Intervals of Integration.- 7.8 An Equation Over a Semi-Infinite Interval.- 7.9 The Equation of the Second Kind Over a Semi-Infinite Interval.- 7.10 Asymptotic Behavior of Eigenvalues.- 7.11 Bibliographical Notes.- 7.12 Problems.- 8 Wiener-Hopf Integral Equations.- 8.1 Introduction.- 8.2 The Holomorphic Fourier Transform.- 8.3 The Mathematical Technique.- 8.4 The Distributional Wiener-Hopf Operators.- 8.5 Illustrations.- 8.6 Bibliographical Notes.- 8.7 Problems.- 9 Dual and Triple Integral Equations.- 9.1 Introduction.- 9.2 The Hankel Transform.- 9.3 Dual Equations with Trigonometric Kernels.- 9.4 Beltrami's Dual Integral Equations.- 9.5 Some Triple Integral Equations.- 9.6 Erdélyi-Köber Operators.- 9.7 Dual Integral Equations of the Titchmarsh Type.- 9.8 D
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Rezensionen
"The book represents a well-written and richly illustrated by examples textbook for those who want to be introduced to the topic... The book...might be very useful for advanced engineers and students. Special features, distinguishing the book from others...are simple exposition (minimal number of lengthy proofs), ample examples, and exercises... The authors supply by examples almost all principal sections and demonstrate practical use of the exposed theoretical material. Bibliographical notes and exercises conclude each chapter." -Zentralblatt Math "The content and style reflect the fact that the authors address their book to those who are interested in applications, like physicists, theoretically inclined engineers and other scientists working with mathematical tools... The necessary prerequisites are summarized at the beginning in a separate chapter, which makes the material accessible also for graduate students with little background in mathematics... Special features of the book in comparison with most texts on singular integral equations are the distributional framework and the inclusion of Hadamard finite part integrals... The authors give explicit solutions and formulas...making the book a good reference for those who need to solve concrete problems. Many worked-out examples and exercises...help the ambitious reader to get some practice and may serve as a valuable source of problems for students and lecturers." -Mathematical Reviews