29,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
15 °P sammeln
  • Broschiertes Buch

O discurso de ódio e o assédio estão generalizados na comunicação em linha, devido à liberdade e ao anonimato dos utilizadores e à falta de regulamentação das redes sociais. Por este motivo, o trolling cibernético e o bullying são problemas importantes numa sociedade. Para ultrapassar este problema, podemos utilizar a capacidade de aprendizagem automática para a deteção de discursos de ódio, a fim de captar propriedades comuns de conjuntos de dados genéricos de tópicos e transferir este conhecimento para reconhecer manifestações específicas de discursos de ódio utilizando PNL, ML e análise. O…mehr

Produktbeschreibung
O discurso de ódio e o assédio estão generalizados na comunicação em linha, devido à liberdade e ao anonimato dos utilizadores e à falta de regulamentação das redes sociais. Por este motivo, o trolling cibernético e o bullying são problemas importantes numa sociedade. Para ultrapassar este problema, podemos utilizar a capacidade de aprendizagem automática para a deteção de discursos de ódio, a fim de captar propriedades comuns de conjuntos de dados genéricos de tópicos e transferir este conhecimento para reconhecer manifestações específicas de discursos de ódio utilizando PNL, ML e análise. O nosso principal objetivo é aplicar este modelo sofisticado e eficiente em dados de texto para obter resultados óptimos e precisos. Usamos diferentes técnicas de aprendizado de máquina e aprendizado profundo, incluindo abordagens multimodais. Utilizamos um conjunto de dados que está dividido em tópicos específicos, como misoginia, sexismo, racismo, xenofobia e homofobia. Treinar um modelo numa combinação de vários conjuntos de dados específicos (conjuntos de treino de vários) é mais eficaz do que treinar um modelo num conjunto de dados genérico atópico. Os conjuntos de dados podem ser recolhidos a partir de várias fontes, como a API do YouTube, a API do Twitter, o web-scrapping ou várias fontes governamentais. O nosso objetivo é efetuar o pré-processamento e a análise exploratória dos dados recolhidos e retirar conclusões a partir deles,
Autorenporträt
O Prof. Dhananjay Bhagat, um educador e tecnólogo de sucesso, dedica-se ao ensino e a manter-se atualizado sobre as tecnologias emergentes. Com uma vasta experiência, deu contributos substanciais para a educação, abrangendo o ensino, a investigação e projectos inovadores.