In this thesis, I study hydrodynamical models of slim accretion disks - advective, optically thick disks which generalize the standard models of radiatively efficient thin disks to all accretion rates. I start with a general introduction to the theory of accretion onto compact objects. It is followed by a derivation of the commonly-used standard models of thin disks. In the subsequent section I introduce the equations describing slim disks, explain the numerical methods I used to solve them and discuss properties of such solutions. I also give a general derivation of non-stationary equations and present the time evolution of thermally unstable accretion disks. I introduce a state-of-the-art approach coupling the radial and vertical structures of an advective accretion disk and discuss the improvements it brings to vertically-averaged solutions. I also present a numerical model of self-illuminated slim accretion disks. Finally, I present and discuss applications of slim accretion disks.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.