54,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
27 °P sammeln
  • Broschiertes Buch

The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only…mehr

Produktbeschreibung
The concept of smart drug delivery vehicles involves designing and preparing a nanostructure (or microstructure) that can be loaded with a cargo, this can be a therapeutic drug, a contrast agent for imaging, or a nucleic acid for gene therapy. The nanocarrier serves to protect the cargo from degradation by enzymes in the body, to enhance the solubility of insoluble drugs, to extend the circulation half-life, and to enhance its penetration and accumulation at the target site. Importantly, smart nanocarriers can be designed to be responsive to a specific stimulus, so that the cargo is only released or activated when desired. In this volume we cover smart nanocarriers that respond to externally applied stimuli that usually involve application of physical energy. This physical energy can be applied from outside the body and can either cause cargo release, or can activate the nanostructure to be cytotoxic, or both. The stimuli covered include light of various wavelengths (ultraviolet, visible or infrared), temperature (increased or decreased), magnetic fields (used to externally manipulate nanostructures and to activate them), ultrasound, and electrical and mechanical forces. Finally we discuss the issue of nanotoxicology and the future scope of the field.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Mahdi Karimi received his BSc degree in Medical Laboratory Science from the Iran University of Medical Science (IUMS), in 2005. In 2008, he achieved the MSc degree in Medical Biotechnology from Tabriz University of Medical Science and joined the Tarbiat Modares University as a PhD student in the nanobiotechnology field and completed his research in 2013. During his research, in 2012, he affiliated with the laboratory of Professor Michael Hamblin in the Wellman Center for Photomedicine at Massachusetts General Hospital and Harvard Medical School as a researcher visitor, where he contributed to the design and construction of new smart nanoparticles for drug/gene delivery. On finishing the study, he joined, as Assistant Professor, the Department of Medical Nanotechnology at IUMS. His current research interests include smart nanoparticles' design in drug/gene delivery and microfluidic systems. He has established a scientific collaboration between his lab and Professor Michael Hamblin's lab to design new classes of smart nanovehicles in drug/gene delivery systems.