Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In differential topology, a branch of mathematics, a smooth functor is a type of functor defined on finite-dimensional real vector spaces. Intuitively, a smooth functor is smooth in the sense that it sends smoothly parameterized families of vector spaces to smoothly parameterized families of vector spaces. Smooth functors may therefore be uniquely extended to functors defined on vector bundles.Smooth functors are significant because any smooth functor can be applied fiberwise to a differentiable vector bundle on a manifold. Smoothness of the functor is the condition required to ensure that the patching data for the bundle are smooth as mappings of manifolds. For instance, because the nth exterior power of a vector space defines a smooth functor, the nth exterior power of a smooth vector bundle is also a smooth vector bundle.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno