Social Sensing and Big Data Computing for Disaster Management
Herausgeber: Li, Zhenlong; T Emrich, Christopher; Huang, Qunying
Social Sensing and Big Data Computing for Disaster Management
Herausgeber: Li, Zhenlong; T Emrich, Christopher; Huang, Qunying
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Social Sensing and Big Data Computing for Disaster Management captures recent advancements in leveraging social sensing and big data computing for supporting disaster management.
Andere Kunden interessierten sich auch für
- Global Warming, Natural Hazards, and Emergency Management113,99 €
- Natural Disaster Hotspots Case Studies24,99 €
- The Role of Ecosystems in Disaster Risk Reduction48,99 €
- Editors' ChoiceIrma14,99 €
- Anne E BeldenInflamed19,99 €
- Mica MosbacherThe Hurricane Factor23,99 €
- Rose-Ann SmithThe Day I Became a Hurricane15,99 €
-
-
-
Social Sensing and Big Data Computing for Disaster Management captures recent advancements in leveraging social sensing and big data computing for supporting disaster management.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Taylor & Francis
- Seitenzahl: 192
- Erscheinungstermin: 23. November 2020
- Englisch
- Abmessung: 246mm x 174mm x 11mm
- Gewicht: 345g
- ISBN-13: 9780367617653
- ISBN-10: 036761765X
- Artikelnr.: 60013377
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
- Verlag: Taylor & Francis
- Seitenzahl: 192
- Erscheinungstermin: 23. November 2020
- Englisch
- Abmessung: 246mm x 174mm x 11mm
- Gewicht: 345g
- ISBN-13: 9780367617653
- ISBN-10: 036761765X
- Artikelnr.: 60013377
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- 06621 890
Zhenlong Li is Associate Professor in the Department of Geography at the University of South Carolina, USA where he established and leads the Geoinformation and Big Data Research Laboratory. His primary research focuses on geospatial big data analytics, spatiotemporal analysis/modelling, and CyberGIS/GeoAI. By synthesizing advanced computing technologies, geospatial methods, and spatiotemporal principles, his research aims to advance knowledge discovery and decision making to support domain applications including disaster management, climate change, human mobilities, and public health. Qunying Huang is Associate Professor in the Department of Geography at the University of Wisconsin-Madison, USA. Her fields of expertise include spatial computing, spatial data mining, and spatial data analytics. Dr. Huang's research bridges the gap between computer and information science (CIScience) and GIScience by generating new computational algorithms and methods to make sense of complex big spatial datasets obtained from both the physical sensing (e.g. remote sensing) and social (e.g. social media) sensing networks. The problem domains of her research are related to natural hazards and human mobility. Christopher T. Emrich is Endowed Associate Professor of Environmental Science and Public Administration within the School of Public Administration and a founding member of the newly formed National Center for Integrated Coastal Research at the University of Central Florida (UCF Coastal), USA. His research/practical service includes applying geospatial technologies to emergency management planning and practice, long-term disaster recovery, and the intersection of social vulnerability and community resilience in the face of catastrophe.
1. Introduction to social sensing and big data computing for disaster management Zhenlong Li, Qunying Huang and Christopher T. Emrich 2. Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: a case study of Hurricane Irma Muhammed Ali Sit, Caglar Koylu and Ibrahim Demir 3. Deep learning for real-time social media text classification for situation awareness - using Hurricanes Sandy, Harvey, and Irma as case studies Manzhu Yu, Qunying Huang, Han Qin, Chris Scheele and Chaowei Yang 4. A visual-textual fused approach to automated tagging of flood-related tweets during a flood event Xiao Huang, Cuizhen Wang, Zhenlong Li and Huan Ning 5. Rapid estimation of an earthquake impact area using a spatial logistic growth model based on social media data Yandong Wang, Shisi Ruan, Teng Wang and Mengling Qiao 6. Mapping near-real-time power outages from social media Huina Mao, Gautam Thakur, Kevin Sparks, Jibonananda Sanyal and Budhendra Bhaduri 7. Social and geographical disparities in Twitter use during Hurricane Harvey Lei Zou, Nina S. N. Lam, Shayan Shams, Heng Cai, Michelle A. Meyer, Seungwon Yang, Kisung Lee, Seung-Jong Park and Margaret A. Reams 8. Population distribution modelling at fine spatio-temporal scale based on mobile phone data Petr Kubí
ek, Milan Kone
ný, Zden
k Stachö, Jie Shen, Luká Herman, Tomá
ezník, Karel Stan
k, Radim tampach and imon Leitgeb 9. Discovering the relationship of disasters from big scholar and social media news datasets Liang Zheng, Fei Wang, Xiaocui Zheng and Binbin Liu 10. A cyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management Zhe Zhang, Hao Hu, Dandong Yin, Shakil Kashem, Ruopu Li, Heng Cai, Dylan Perkins and Shaowen Wang
ek, Milan Kone
ný, Zden
k Stachö, Jie Shen, Luká Herman, Tomá
ezník, Karel Stan
k, Radim tampach and imon Leitgeb 9. Discovering the relationship of disasters from big scholar and social media news datasets Liang Zheng, Fei Wang, Xiaocui Zheng and Binbin Liu 10. A cyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management Zhe Zhang, Hao Hu, Dandong Yin, Shakil Kashem, Ruopu Li, Heng Cai, Dylan Perkins and Shaowen Wang
1. Introduction to social sensing and big data computing for disaster management Zhenlong Li, Qunying Huang and Christopher T. Emrich 2. Identifying disaster-related tweets and their semantic, spatial and temporal context using deep learning, natural language processing and spatial analysis: a case study of Hurricane Irma Muhammed Ali Sit, Caglar Koylu and Ibrahim Demir 3. Deep learning for real-time social media text classification for situation awareness - using Hurricanes Sandy, Harvey, and Irma as case studies Manzhu Yu, Qunying Huang, Han Qin, Chris Scheele and Chaowei Yang 4. A visual-textual fused approach to automated tagging of flood-related tweets during a flood event Xiao Huang, Cuizhen Wang, Zhenlong Li and Huan Ning 5. Rapid estimation of an earthquake impact area using a spatial logistic growth model based on social media data Yandong Wang, Shisi Ruan, Teng Wang and Mengling Qiao 6. Mapping near-real-time power outages from social media Huina Mao, Gautam Thakur, Kevin Sparks, Jibonananda Sanyal and Budhendra Bhaduri 7. Social and geographical disparities in Twitter use during Hurricane Harvey Lei Zou, Nina S. N. Lam, Shayan Shams, Heng Cai, Michelle A. Meyer, Seungwon Yang, Kisung Lee, Seung-Jong Park and Margaret A. Reams 8. Population distribution modelling at fine spatio-temporal scale based on mobile phone data Petr Kubí
ek, Milan Kone
ný, Zden
k Stachö, Jie Shen, Luká Herman, Tomá
ezník, Karel Stan
k, Radim tampach and imon Leitgeb 9. Discovering the relationship of disasters from big scholar and social media news datasets Liang Zheng, Fei Wang, Xiaocui Zheng and Binbin Liu 10. A cyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management Zhe Zhang, Hao Hu, Dandong Yin, Shakil Kashem, Ruopu Li, Heng Cai, Dylan Perkins and Shaowen Wang
ek, Milan Kone
ný, Zden
k Stachö, Jie Shen, Luká Herman, Tomá
ezník, Karel Stan
k, Radim tampach and imon Leitgeb 9. Discovering the relationship of disasters from big scholar and social media news datasets Liang Zheng, Fei Wang, Xiaocui Zheng and Binbin Liu 10. A cyberGIS-enabled multi-criteria spatial decision support system: A case study on flood emergency management Zhe Zhang, Hao Hu, Dandong Yin, Shakil Kashem, Ruopu Li, Heng Cai, Dylan Perkins and Shaowen Wang