98,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
49 °P sammeln
  • Broschiertes Buch

While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides…mehr

Produktbeschreibung
While solar is the fastest-growing energy source in the world, key concerns around solar power's inherent variability threaten to de-rail that scale-up . Currently, integration of intermittent solar resources into the grid creates added complication to load management, leading some utilities to reject it altogether, while other operators may penalize the producers via rate increases or force solar developers to include storage devices on-site to smooth out power delivery at the point of production. However these efforts at mitigation unfold, it is increasingly clear to parties on all sides that energy storage will be pivotally important in the drive to boost the integration of variable renewable sources into power infrastructures across the globe. Thoughtfully implemented storage technologies can reduce peak demand, improve day-to-day reliability, provide emergency power in case of interrupted generation, reduce consumer and utility costs by easing load balance challenges, decrease emissions, and increase the amount of distributed and renewable energy that makes it into the grid. While energy storage has long been an area of concern for scientists and engineers, there has been no comprehensive single text covering the storage methods available to solar power producers, which leaves a lamentable gap in the literature core to this important field. Solar Energy Storage aims to become the authoritative work on the topic, incorporating contributions from an internationally recognized group of top authors from both industry and academia, focused on providing information from underlying scientific fundamentals to practical applications, and emphasizing the latest technological developments driving this discipline forward.
Autorenporträt
Professor Emeritus at the Department of People and Technology, and a professor of physics at the Institute of Mathematics and Physics, both at Roskilde University, Denmark. He is also an independent consultant at Novator Advanced Technology Consulting. Bent Sørensen's research is cross-disciplinary and has resulted in nearly a thousand scientific articles and some 40 books, including foundation work in economic theory (the scenario method, life-cycle analysis) and in energy research (renewable energy resources, technology and applications). Dr. Sørensen is one of the world's leading specialists in renewable energy. He has five decades of experience in researching the field, and has published hundreds of monographs, articles in scientific journals, technical reports, and conference contributions. He has received several awards and has been knighted by Her Majesty Queen Margrethe of Denmark. He has worked at universities in Japan, France, Denmark, Australia and the United States (Berkeley and Yale), has been a consultant to governments and international organizations, a lead author in the IPCC climate assessment recipient of several international prizes and honors.
Rezensionen
"...a state-of-the-art description and discussion of the energy storage issues relevant for most solar energy systems... One of the two areas of application for solar energy storage systems handles the obvious day-to-night storage requirement and the other is seasonal energy storage..." --Power Electronics