32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

O principal objetivo deste trabalho consiste no estudo da desidratação osmótica, em soluções de sacarose, de goiaba e de maçã, e da secagem convectiva complementar de maçã, com ênfase na modelagem matemática. As cinéticas características do processo de desidratação osmótica e da secagem convectiva são descritas por meio de modelos matemáticos que usam soluções numéricas da equação de difusão uni e bidimensional, em coordenadas cartesianas, com condição de contorno do terceiro tipo: no primeiro consideram-se os parâmetros de processo e as dimensões do produto constantes; no segundo admite-se…mehr

Produktbeschreibung
O principal objetivo deste trabalho consiste no estudo da desidratação osmótica, em soluções de sacarose, de goiaba e de maçã, e da secagem convectiva complementar de maçã, com ênfase na modelagem matemática. As cinéticas características do processo de desidratação osmótica e da secagem convectiva são descritas por meio de modelos matemáticos que usam soluções numéricas da equação de difusão uni e bidimensional, em coordenadas cartesianas, com condição de contorno do terceiro tipo: no primeiro consideram-se os parâmetros de processo e as dimensões do produto constantes; no segundo admite-se que essas grandezas são variáveis. As soluções numéricas são obtidas por meio do método dos volumes finitos com uma formulação totalmente implícita. A estimativa dos parâmetros de processo, a partir de dados experimentais, é feita por meio de um otimizador baseado no método inverso. Os modelos matemáticos que levaram em conta as variações nos parâmetros de processo, assim como o encolhimento inerente aos processos de desidratação osmótica e de secagem convectiva mostraram-se mais adequados fisicamente, além de apresentarem uma melhora discreta nos indicadores estatísticos.
Autorenporträt
Possui graduação em Licenciatura Plena em Matemática pela Universidade Estadual da Paraíba e em Direito pela Universidade Federal da Paraíba, mestrado em Matemática pela Universidade Federal da Paraíba e doutorado em Engenharia de Processos pela Universidade Federal de Campina Grande.Atualmente é professor do Instituto Federal da Paraíba.