32,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Neste trabalho, apresenta-se a solução das Equações da Cinética Pontual de Nêutrons aplicando o Método da Aproximação Polinomial. Para a resolução consideram-se um e seis grupos de precursores de nêutrons atrasados com e sem efeitos de temperatura para reatividades do tipo: constante, rampa, quadrática, senoidal, zig-zag e fonte pulsada. A ideia principal é expandir a densidade de nêutrons, a concentração de precursores de nêutrons atrasados e a temperatura como séries de potências considerando a reatividade como uma função constante em um intervalo de tempo relativamente pequeno, em torno de…mehr

Produktbeschreibung
Neste trabalho, apresenta-se a solução das Equações da Cinética Pontual de Nêutrons aplicando o Método da Aproximação Polinomial. Para a resolução consideram-se um e seis grupos de precursores de nêutrons atrasados com e sem efeitos de temperatura para reatividades do tipo: constante, rampa, quadrática, senoidal, zig-zag e fonte pulsada. A ideia principal é expandir a densidade de nêutrons, a concentração de precursores de nêutrons atrasados e a temperatura como séries de potências considerando a reatividade como uma função constante em um intervalo de tempo relativamente pequeno, em torno de um ponto ordinário. No primeiro intervalo de tempo aplicam-se as condições iniciais do problema e utiliza-se a continuação analítica para determinar as soluções dos próximos intervalos. Com a aplicação do Método da Aproximação Polinomial, é possível superar o problema de rigidez das equações. Compara-se o método com diferentes tipos de aproximações (linear, quadrática e cúbica). Os resultados obtidos através das simulações numéricas com aproximação linear são comparados aos encontrados na literatura.
Autorenporträt
Doutoranda em Engenharia Mecânica na Universidade Federal do Rio Grande do Sul. Mestre em Modelagem Matemática na Universidade Federal de Pelotas (2015). Possui graduação em Licenciatura em Matemática do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Bento Gonçalves (2012).