40,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
20 °P sammeln
  • Broschiertes Buch

Neste trabalho, resolve-se a Equação de Cinética Espacial da teoria de Difusão de Nêutrons em geometria cartesiana unidimensional, domínio homogêneo e heterogêneo, com dois grupos de energia e seis grupos de precursores de nêutrons atrasados. A metodologia proposta consiste em expandir os fluxos escalares de nêutrons (rápido e térmico) e as concentrações de precursores de nêutrons atrasados em séries de Taylor para a variável espacial, trazendo a dependência temporal para os coeficientes dessas séries. Truncando as séries de Taylor na ordem quadrática, obtém-se um conjunto de sistemas…mehr

Produktbeschreibung
Neste trabalho, resolve-se a Equação de Cinética Espacial da teoria de Difusão de Nêutrons em geometria cartesiana unidimensional, domínio homogêneo e heterogêneo, com dois grupos de energia e seis grupos de precursores de nêutrons atrasados. A metodologia proposta consiste em expandir os fluxos escalares de nêutrons (rápido e térmico) e as concentrações de precursores de nêutrons atrasados em séries de Taylor para a variável espacial, trazendo a dependência temporal para os coeficientes dessas séries. Truncando as séries de Taylor na ordem quadrática, obtém-se um conjunto de sistemas recursivos de equações diferenciais ordinárias, onde aplica-se o Método da Decomposição modificado, dividindo a matriz dos coeficientes em duas, uma diagonal constante e outra, inserida no termo fonte, com os termos restantes e a dependência temporal. Através desse procedimento, elimina-se o caráter de rigidez das equações e dispensa-se a utilização da continuação analítica. O trabalho tem por objetivo obter uma solução com representação analítica livre de rigidez, com controle de erro, análise de estabilidade e convergência, utilizando a própria equação diferencial como estimativa.
Autorenporträt
Doutoranda em Engenharia Mecânica na Universidade Federal do Rio Grande do Sul. Mestre em Modelagem Matemática na Universidade Federal de Pelotas (2015). Possui graduação em Licenciatura em Matemática do Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul - Campus Bento Gonçalves (2012).