Systems of polynomial equations play an important role in many scientific applications. But it is often rather complex and time-consuming to find all -real and complex- solutions. This book describes an efficient algorithm, which uses eigenvalues to compute all solutions of a given system of polynomial equations. For this, the theory of Gröbner bases is combined with numerical linear algebra. Also, a comparison to the performance of existing algorithms is given. Furthermore, a new algorithm to compute the primary decomposition of a zero-dimensional ideal and an algorithm to compute the number of real respectively complex roots of a system of polynomial equations using the quadratic form is delineated. All described algorithms are implemented in the computer algebra system SINGULAR.
Bitte wählen Sie Ihr Anliegen aus.
Rechnungen
Retourenschein anfordern
Bestellstatus
Storno