42,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
21 °P sammeln
  • Broschiertes Buch

Spectral geometry deals with the survey of these natural, differential operators spectrums and among other things it tries to emphasize geometrical and topological properties of a manifold that can be recuperated from the spectrums. The present work is going to approach several issues referring to the spectrums of Hodge-de Rham operators on closed Riemannian manifolds. The author of this paper is going to discuss the continuous dependence on the Riemannian metrics on a smooth and closed differential manifold of the eigenvalues of the Hodge-de Rham operators and its restrictions regarding the…mehr

Produktbeschreibung
Spectral geometry deals with the survey of these natural, differential operators spectrums and among other things it tries to emphasize geometrical and topological properties of a manifold that can be recuperated from the spectrums. The present work is going to approach several issues referring to the spectrums of Hodge-de Rham operators on closed Riemannian manifolds. The author of this paper is going to discuss the continuous dependence on the Riemannian metrics on a smooth and closed differential manifold of the eigenvalues of the Hodge-de Rham operators and its restrictions regarding the exact, differential form spaces and consequences of such feature. Moreover, by using J. Wenzelburger s idea [80], [81], we are going to prove that the eigenvalues of the Hodge-de Rham operators even smoothly depend on the Riemannian metrics on a smooth, closed, differential manifold if the Fréchet smooth manifold canonical structure is taken into consideration in the space of all Riemannian metrics with such a manifold.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Mihaela Albici, Studied Pure Mathematics at University of West, Timisoara, PhD. Lecturer at University Constantin Brancoveanu, Pitesti