Spatial Data and Intelligence
4th International Conference, SpatialDI 2023, Nanchang, China, April 13¿15, 2023, Proceedings
Herausgegeben:Meng, Xiaofeng; Li, Xiang; Xu, Jianqiu; Zhang, Xueying; Fang, Yuming; Zheng, Bolong; Li, Yafei
Spatial Data and Intelligence
4th International Conference, SpatialDI 2023, Nanchang, China, April 13¿15, 2023, Proceedings
Herausgegeben:Meng, Xiaofeng; Li, Xiang; Xu, Jianqiu; Zhang, Xueying; Fang, Yuming; Zheng, Bolong; Li, Yafei
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book constitutes the refereed proceedings of the 4th International Conference on Spatial Data and Intelligence, SpatialDI 2023, held in Nanchang, China, in April 13-15, 2023.
The 18 full papers included in this book were carefully reviewed and selected from 68 submissions. They were organized in topical sections as follows: traffic management; visualization analysis; spatial big data analysis; spatiotemporal data mining; spatiotemporal data storage; and metaverse.
Andere Kunden interessierten sich auch für
- Spatial Data and Intelligence53,99 €
- Transactions on Large-Scale Data- and Knowledge-Centered Systems LI41,99 €
- Data Mining and Big Data39,99 €
- Thiago Christiano SilvaMachine Learning in Complex Networks77,99 €
- Spatial Data and Intelligence53,49 €
- Mobility Analytics for Spatio-Temporal and Social Data33,99 €
- Computational Social Networks39,99 €
-
-
-
This book constitutes the refereed proceedings of the 4th International Conference on Spatial Data and Intelligence, SpatialDI 2023, held in Nanchang, China, in April 13-15, 2023.
The 18 full papers included in this book were carefully reviewed and selected from 68 submissions. They were organized in topical sections as follows: traffic management; visualization analysis; spatial big data analysis; spatiotemporal data mining; spatiotemporal data storage; and metaverse.
The 18 full papers included in this book were carefully reviewed and selected from 68 submissions. They were organized in topical sections as follows: traffic management; visualization analysis; spatial big data analysis; spatiotemporal data mining; spatiotemporal data storage; and metaverse.
Produktdetails
- Produktdetails
- Lecture Notes in Computer Science 13887
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-32909-8
- 1st ed. 2023
- Seitenzahl: 284
- Erscheinungstermin: 11. Mai 2023
- Englisch
- Abmessung: 235mm x 155mm x 16mm
- Gewicht: 435g
- ISBN-13: 9783031329098
- ISBN-10: 3031329090
- Artikelnr.: 67750727
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
- Lecture Notes in Computer Science 13887
- Verlag: Springer / Springer Nature Switzerland / Springer, Berlin
- Artikelnr. des Verlages: 978-3-031-32909-8
- 1st ed. 2023
- Seitenzahl: 284
- Erscheinungstermin: 11. Mai 2023
- Englisch
- Abmessung: 235mm x 155mm x 16mm
- Gewicht: 435g
- ISBN-13: 9783031329098
- ISBN-10: 3031329090
- Artikelnr.: 67750727
- Herstellerkennzeichnung Die Herstellerinformationen sind derzeit nicht verfügbar.
Traffic Management.- APADGCN: Adaptive Partial Attention Diffusion Graph Convolutional Network for Traffic Flow Forecasting.- DeepParking: Deep Learning-based Planning Method for Autonomous Parking.- Recommendations for Urban Planning based on Non-motorized Travel Data and Street Comfort.- A Composite Grid Clustering Algorithm based on Density and Balance Degree.- Visualization Analysis.- Research on the Visualization Method of Weibo User Sentiment Analysis based on IP Affiliation and Comment Content.- Village Web 3D Visualization System based on Cesium.- Spatial Big Data Analysis.- Spatial-Aware Community Search over Heterogeneous Information Networks.- Ship Classification Based on Trajectories Data and LightGBM Considering Offshore Distance Feature.- CDGCN: An Effective and Efficient Algorithm based on Community Detection for Training Deep and Large Graph Convolutional Networks.- Investigate the Relationship between Traumatic Occurrencesand Socio-economic Status based on Geographic Information System (GIS): The Case of Qingpu in Shanghai, China.- Contact Query Processing based on Spatiotemporal Trajectory.- Influential Community Search over Large Heterogeneous Information Networks.- Spatiotemporal Data Mining.- Fast Mining Prevalent Co-location Patterns over Dense Spatial Datasets.- Continuous Sub-prevalent Co-location Pattern Mining.- The Abnormal Detection Method of Ship Trajectory with Adaptive Transformer Model based on Migration Learning.- Spatiotemporal Data Storage.- A Comparative Study of Row and Column Storage for Time Series Data.- LOACR: A Cache Replacement Method Based on Loop Assist.- Metaverse.- Unifying Reality and Virtuality: Constructing a Cohesive Metaverse Using Complex Numbers.
Traffic Management.- APADGCN: Adaptive Partial Attention Diffusion Graph Convolutional Network for Traffic Flow Forecasting.- DeepParking: Deep Learning-based Planning Method for Autonomous Parking.- Recommendations for Urban Planning based on Non-motorized Travel Data and Street Comfort.- A Composite Grid Clustering Algorithm based on Density and Balance Degree.- Visualization Analysis.- Research on the Visualization Method of Weibo User Sentiment Analysis based on IP Affiliation and Comment Content.- Village Web 3D Visualization System based on Cesium.- Spatial Big Data Analysis.- Spatial-Aware Community Search over Heterogeneous Information Networks.- Ship Classification Based on Trajectories Data and LightGBM Considering Offshore Distance Feature.- CDGCN: An Effective and Efficient Algorithm based on Community Detection for Training Deep and Large Graph Convolutional Networks.- Investigate the Relationship between Traumatic Occurrencesand Socio-economic Status based on Geographic Information System (GIS): The Case of Qingpu in Shanghai, China.- Contact Query Processing based on Spatiotemporal Trajectory.- Influential Community Search over Large Heterogeneous Information Networks.- Spatiotemporal Data Mining.- Fast Mining Prevalent Co-location Patterns over Dense Spatial Datasets.- Continuous Sub-prevalent Co-location Pattern Mining.- The Abnormal Detection Method of Ship Trajectory with Adaptive Transformer Model based on Migration Learning.- Spatiotemporal Data Storage.- A Comparative Study of Row and Column Storage for Time Series Data.- LOACR: A Cache Replacement Method Based on Loop Assist.- Metaverse.- Unifying Reality and Virtuality: Constructing a Cohesive Metaverse Using Complex Numbers.