Fuad Badrieh
Spectral, Convolution and Numerical Techniques in Circuit Theory
Fuad Badrieh
Spectral, Convolution and Numerical Techniques in Circuit Theory
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book describes a set of tools and algorithms then enable the electrical engineer in fields such as circuit design, power delivery, signal integrity, analog design, package and board modeling to arrive at approximate and exact solutions robustly and relatively efficiently, even when typical software packages may fail to do so. By leveraging well established and time tested methods, the author demonstrates how the practitioner will be able to deal with various circuit design problems and signal integrity issues both in the frequency and time domains. The presented tool set is an alternative…mehr
Andere Kunden interessierten sich auch für
- Fuad BadriehSpectral, Convolution and Numerical Techniques in Circuit Theory104,99 €
- Howard Cam LuongTransformer-Based Design Techniques for Oscillators and Frequency Dividers63,99 €
- Assim BoukhaymaUltra Low Noise CMOS Image Sensors103,99 €
- Muhammad Usman Karim KhanEnergy Efficient Embedded Video Processing Systems110,99 €
- Agustin OchoaFeedback in Analog Circuits63,99 €
- Sahel AbdiniaDesign of Organic Complementary Circuits and Systems on Foil37,99 €
- Nereo MarkulicDigital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission88,99 €
-
-
-
This book describes a set of tools and algorithms then enable the electrical engineer in fields such as circuit design, power delivery, signal integrity, analog design, package and board modeling to arrive at approximate and exact solutions robustly and relatively efficiently, even when typical software packages may fail to do so. By leveraging well established and time tested methods, the author demonstrates how the practitioner will be able to deal with various circuit design problems and signal integrity issues both in the frequency and time domains. The presented tool set is an alternative to "brute force" time discretization and software utilization, offering great insight into the operations of linear systems ranging from RLC networks to device modeling.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-319-71436-3
- 1st ed. 2018
- Seitenzahl: 1004
- Erscheinungstermin: 16. April 2018
- Englisch
- Abmessung: 260mm x 183mm x 59mm
- Gewicht: 2048g
- ISBN-13: 9783319714363
- ISBN-10: 3319714368
- Artikelnr.: 49485701
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-319-71436-3
- 1st ed. 2018
- Seitenzahl: 1004
- Erscheinungstermin: 16. April 2018
- Englisch
- Abmessung: 260mm x 183mm x 59mm
- Gewicht: 2048g
- ISBN-13: 9783319714363
- ISBN-10: 3319714368
- Artikelnr.: 49485701
Fuad Badrieh is a Senior Member of Technical Staff Engineer at Micron Technology, in Boise, Idaho. He obtained his BS, MS and PhD in EE at Arizona State University. He brings 17 years of industrial experience in modelling, circuit design, power integrity and automation.
1 Introduction 2 Steady State Solutions to Circuit Problems 3 Differential Equation Solution to Circuit Problems 4 Series Expansion solution for Circuit Problems 5 Numerical Differential Equation Solution to Circuit Problems 6 Fourier Series and Periodic Functions 7 Complex Fourier Series 8 Fourier Transform 9 Properties of the Fourier Transforms 10 Further Examples/Topics on Fourier Transform 11 Fourier Transform of Periodic Signals 12 Approximate and Numerical Techniques in Fourier Transform 13 Bandwidth 14 Laplace Transform 15 Using Complex Integration to Figure Inverse Laplace Transform 16 Properties of Laplace Transform 17 Laplace Transform of Periodic Functions 18 Finding Inverse Laplace Transform via Partial Fractions 19 Convolution 20 Signal Construction in Terms of Convolution Integrals 21 The Delta Function 22 Impulse Response 23 Time Convolution with Impulse Response 24 Time Convolution with the Unit Step Response 25 Sampling and the Sampling Theorem 26 Transfer Functions 27 The Phase 28 Stability and Relation to Poles Placements 29 Impulse Response as Configured from Inverse Transform 30 Unit Step Response as Configured from Inverse Transform 31 Pulse response 32 Causal Cosine and Sine Response 33 Causal, Periodic Pulse Response 34 Slanted Unit Step Response 35 Voltage/Voltage Filters 36 RLC Circuits with Feedback 37 Matrix Solution to MultiBranch Networks 38 MultiSource Networks and Superposition 39 Systems with Initial Conditions 40 Application to Transistor Modeling and Circuits 41 Op-Amp Filters 42 Multi-port Network: Z-, Y-Parameters 43 Scattering (s-) Parameters 44 Application of Spectral Techniques to Solving 2D Electrostatic Problems 45 Application of Spectral Techniques in Solving Diffusion Problems 46 Application of Spectral Techniques in Solving the Wave Equation Appendix References Index
Introduction.- Steady State Solutions to Circuit Problems.- Differential Equation Solution to Circuit Problems.- Series Expansion solution for Circuit Problems.- Numerical Differential Equation Solution to Circuit Problems.- Fourier Series and Periodic Functions.- Complex Fourier Series.- Fourier Transform.- Properties of the Fourier Transforms.- Further Examples/Topics on Fourier Transform.- Fourier Transform of Periodic Signals.- Approximate and Numerical Techniques in Fourier Transform.- Bandwidth.- Laplace Transform.- Using Complex Integration to Figure Inverse Laplace Transform.- Properties of Laplace Transform.- Laplace Transform of Periodic Functions.- Finding Inverse Laplace Transform via Partial Fractions.- Convolution.- Signal Construction in Terms of Convolution Integrals.- The Delta Function.- Impulse Response.- Time Convolution with Impulse Response.- Time Convolution with the Unit Step Response.- Sampling and the Sampling Theorem.- Transfer Functions.- The Phase.- Stability and Relation to Poles Placements.- Impulse Response as Configured from Inverse Transform.- Unit Step Response as Configured from Inverse Transform.- Pulse response.- Causal Cosine and Sine Response.- Causal, Periodic Pulse Response.- Slanted Unit Step Response.- Voltage/Voltage Filters.- RLC Circuits with Feedback.- Matrix Solution to MultiBranch Networks.- MultiSource Networks and Superposition.- Systems with Initial Conditions.- Application to Transistor Modeling and Circuits.- Op-Amp Filters.- Multi-port Network: Z-, Y-Parameters.- Scattering (s−) Parameters.- Application of Spectral Techniques to Solving 2D Electrostatic Problems.- Application of Spectral Techniques in Solving Diffusion Problems.- Application of Spectral Techniques in Solving the Wave Equation.- Appendix.- References.- Index.
1 Introduction 2 Steady State Solutions to Circuit Problems 3 Differential Equation Solution to Circuit Problems 4 Series Expansion solution for Circuit Problems 5 Numerical Differential Equation Solution to Circuit Problems 6 Fourier Series and Periodic Functions 7 Complex Fourier Series 8 Fourier Transform 9 Properties of the Fourier Transforms 10 Further Examples/Topics on Fourier Transform 11 Fourier Transform of Periodic Signals 12 Approximate and Numerical Techniques in Fourier Transform 13 Bandwidth 14 Laplace Transform 15 Using Complex Integration to Figure Inverse Laplace Transform 16 Properties of Laplace Transform 17 Laplace Transform of Periodic Functions 18 Finding Inverse Laplace Transform via Partial Fractions 19 Convolution 20 Signal Construction in Terms of Convolution Integrals 21 The Delta Function 22 Impulse Response 23 Time Convolution with Impulse Response 24 Time Convolution with the Unit Step Response 25 Sampling and the Sampling Theorem 26 Transfer Functions 27 The Phase 28 Stability and Relation to Poles Placements 29 Impulse Response as Configured from Inverse Transform 30 Unit Step Response as Configured from Inverse Transform 31 Pulse response 32 Causal Cosine and Sine Response 33 Causal, Periodic Pulse Response 34 Slanted Unit Step Response 35 Voltage/Voltage Filters 36 RLC Circuits with Feedback 37 Matrix Solution to MultiBranch Networks 38 MultiSource Networks and Superposition 39 Systems with Initial Conditions 40 Application to Transistor Modeling and Circuits 41 Op-Amp Filters 42 Multi-port Network: Z-, Y-Parameters 43 Scattering (s-) Parameters 44 Application of Spectral Techniques to Solving 2D Electrostatic Problems 45 Application of Spectral Techniques in Solving Diffusion Problems 46 Application of Spectral Techniques in Solving the Wave Equation Appendix References Index
Introduction.- Steady State Solutions to Circuit Problems.- Differential Equation Solution to Circuit Problems.- Series Expansion solution for Circuit Problems.- Numerical Differential Equation Solution to Circuit Problems.- Fourier Series and Periodic Functions.- Complex Fourier Series.- Fourier Transform.- Properties of the Fourier Transforms.- Further Examples/Topics on Fourier Transform.- Fourier Transform of Periodic Signals.- Approximate and Numerical Techniques in Fourier Transform.- Bandwidth.- Laplace Transform.- Using Complex Integration to Figure Inverse Laplace Transform.- Properties of Laplace Transform.- Laplace Transform of Periodic Functions.- Finding Inverse Laplace Transform via Partial Fractions.- Convolution.- Signal Construction in Terms of Convolution Integrals.- The Delta Function.- Impulse Response.- Time Convolution with Impulse Response.- Time Convolution with the Unit Step Response.- Sampling and the Sampling Theorem.- Transfer Functions.- The Phase.- Stability and Relation to Poles Placements.- Impulse Response as Configured from Inverse Transform.- Unit Step Response as Configured from Inverse Transform.- Pulse response.- Causal Cosine and Sine Response.- Causal, Periodic Pulse Response.- Slanted Unit Step Response.- Voltage/Voltage Filters.- RLC Circuits with Feedback.- Matrix Solution to MultiBranch Networks.- MultiSource Networks and Superposition.- Systems with Initial Conditions.- Application to Transistor Modeling and Circuits.- Op-Amp Filters.- Multi-port Network: Z-, Y-Parameters.- Scattering (s−) Parameters.- Application of Spectral Techniques to Solving 2D Electrostatic Problems.- Application of Spectral Techniques in Solving Diffusion Problems.- Application of Spectral Techniques in Solving the Wave Equation.- Appendix.- References.- Index.