Fuad Badrieh
Spectral, Convolution and Numerical Techniques in Circuit Theory
Fuad Badrieh
Spectral, Convolution and Numerical Techniques in Circuit Theory
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book describes a set of tools and algorithms then enable the electrical engineer in fields such as circuit design, power delivery, signal integrity, analog design, package and board modeling to arrive at approximate and exact solutions robustly and relatively efficiently, even when typical software packages may fail to do so. By leveraging well established and time tested methods, the author demonstrates how the practitioner will be able to deal with various circuit design problems and signal integrity issues both in the frequency and time domains. The presented tool set is an alternative…mehr
Andere Kunden interessierten sich auch für
- Fuad BadriehSpectral, Convolution and Numerical Techniques in Circuit Theory163,99 €
- Howard Cam LuongTransformer-Based Design Techniques for Oscillators and Frequency Dividers63,99 €
- Assim BoukhaymaUltra Low Noise CMOS Image Sensors103,99 €
- Muhammad Usman Karim KhanEnergy Efficient Embedded Video Processing Systems110,99 €
- Agustin OchoaFeedback in Analog Circuits63,99 €
- Sahel AbdiniaDesign of Organic Complementary Circuits and Systems on Foil37,99 €
- Nereo MarkulicDigital Subsampling Phase Lock Techniques for Frequency Synthesis and Polar Transmission88,99 €
-
-
-
This book describes a set of tools and algorithms then enable the electrical engineer in fields such as circuit design, power delivery, signal integrity, analog design, package and board modeling to arrive at approximate and exact solutions robustly and relatively efficiently, even when typical software packages may fail to do so. By leveraging well established and time tested methods, the author demonstrates how the practitioner will be able to deal with various circuit design problems and signal integrity issues both in the frequency and time domains. The presented tool set is an alternative to "brute force" time discretization and software utilization, offering great insight into the operations of linear systems ranging from RLC networks to device modeling.
Produktdetails
- Produktdetails
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-030-10057-5
- Softcover reprint of the original 1st ed. 2018
- Seitenzahl: 1004
- Erscheinungstermin: 9. Februar 2019
- Englisch
- Abmessung: 254mm x 178mm x 54mm
- Gewicht: 1871g
- ISBN-13: 9783030100575
- ISBN-10: 303010057X
- Artikelnr.: 55709804
- Verlag: Springer / Springer International Publishing / Springer, Berlin
- Artikelnr. des Verlages: 978-3-030-10057-5
- Softcover reprint of the original 1st ed. 2018
- Seitenzahl: 1004
- Erscheinungstermin: 9. Februar 2019
- Englisch
- Abmessung: 254mm x 178mm x 54mm
- Gewicht: 1871g
- ISBN-13: 9783030100575
- ISBN-10: 303010057X
- Artikelnr.: 55709804
Fuad Badrieh is a Senior Member of Technical Staff Engineer at Micron Technology, in Boise, Idaho. He obtained his BS, MS and PhD in EE at Arizona State University. He brings 17 years of industrial experience in modelling, circuit design, power integrity and automation.
Introduction.- Steady State Solutions to Circuit Problems.- Differential Equation Solution to Circuit Problems.- Series Expansion solution for Circuit Problems.- Numerical Differential Equation Solution to Circuit Problems.- Fourier Series and Periodic Functions.- Complex Fourier Series.- Fourier Transform.- Properties of the Fourier Transforms.- Further Examples/Topics on Fourier Transform.- Fourier Transform of Periodic Signals.- Approximate and Numerical Techniques in Fourier Transform.- Bandwidth.- Laplace Transform.- Using Complex Integration to Figure Inverse Laplace Transform.- Properties of Laplace Transform.- Laplace Transform of Periodic Functions.- Finding Inverse Laplace Transform via Partial Fractions.- Convolution.- Signal Construction in Terms of Convolution Integrals.- The Delta Function.- Impulse Response.- Time Convolution with Impulse Response.- Time Convolution with the Unit Step Response.- Sampling and the Sampling Theorem.- Transfer Functions.- The Phase.- Stability and Relation to Poles Placements.- Impulse Response as Configured from Inverse Transform.- Unit Step Response as Configured from Inverse Transform.- Pulse response.- Causal Cosine and Sine Response.- Causal, Periodic Pulse Response.- Slanted Unit Step Response.- Voltage/Voltage Filters.- RLC Circuits with Feedback.- Matrix Solution to MultiBranch Networks.- MultiSource Networks and Superposition.- Systems with Initial Conditions.- Application to Transistor Modeling and Circuits.- Op-Amp Filters.- Multi-port Network: Z-, Y-Parameters.- Scattering (s-) Parameters.- Application of Spectral Techniques to Solving 2D Electrostatic Problems.- Application of Spectral Techniques in Solving Diffusion Problems.- Application of Spectral Techniques in Solving the Wave Equation.- Appendix.- References.- Index.
Introduction.- Steady State Solutions to Circuit Problems.- Differential Equation Solution to Circuit Problems.- Series Expansion solution for Circuit Problems.- Numerical Differential Equation Solution to Circuit Problems.- Fourier Series and Periodic Functions.- Complex Fourier Series.- Fourier Transform.- Properties of the Fourier Transforms.- Further Examples/Topics on Fourier Transform.- Fourier Transform of Periodic Signals.- Approximate and Numerical Techniques in Fourier Transform.- Bandwidth.- Laplace Transform.- Using Complex Integration to Figure Inverse Laplace Transform.- Properties of Laplace Transform.- Laplace Transform of Periodic Functions.- Finding Inverse Laplace Transform via Partial Fractions.- Convolution.- Signal Construction in Terms of Convolution Integrals.- The Delta Function.- Impulse Response.- Time Convolution with Impulse Response.- Time Convolution with the Unit Step Response.- Sampling and the Sampling Theorem.- Transfer Functions.- The Phase.- Stability and Relation to Poles Placements.- Impulse Response as Configured from Inverse Transform.- Unit Step Response as Configured from Inverse Transform.- Pulse response.- Causal Cosine and Sine Response.- Causal, Periodic Pulse Response.- Slanted Unit Step Response.- Voltage/Voltage Filters.- RLC Circuits with Feedback.- Matrix Solution to MultiBranch Networks.- MultiSource Networks and Superposition.- Systems with Initial Conditions.- Application to Transistor Modeling and Circuits.- Op-Amp Filters.- Multi-port Network: Z-, Y-Parameters.- Scattering (s−) Parameters.- Application of Spectral Techniques to Solving 2D Electrostatic Problems.- Application of Spectral Techniques in Solving Diffusion Problems.- Application of Spectral Techniques in Solving the Wave Equation.- Appendix.- References.- Index.
Introduction.- Steady State Solutions to Circuit Problems.- Differential Equation Solution to Circuit Problems.- Series Expansion solution for Circuit Problems.- Numerical Differential Equation Solution to Circuit Problems.- Fourier Series and Periodic Functions.- Complex Fourier Series.- Fourier Transform.- Properties of the Fourier Transforms.- Further Examples/Topics on Fourier Transform.- Fourier Transform of Periodic Signals.- Approximate and Numerical Techniques in Fourier Transform.- Bandwidth.- Laplace Transform.- Using Complex Integration to Figure Inverse Laplace Transform.- Properties of Laplace Transform.- Laplace Transform of Periodic Functions.- Finding Inverse Laplace Transform via Partial Fractions.- Convolution.- Signal Construction in Terms of Convolution Integrals.- The Delta Function.- Impulse Response.- Time Convolution with Impulse Response.- Time Convolution with the Unit Step Response.- Sampling and the Sampling Theorem.- Transfer Functions.- The Phase.- Stability and Relation to Poles Placements.- Impulse Response as Configured from Inverse Transform.- Unit Step Response as Configured from Inverse Transform.- Pulse response.- Causal Cosine and Sine Response.- Causal, Periodic Pulse Response.- Slanted Unit Step Response.- Voltage/Voltage Filters.- RLC Circuits with Feedback.- Matrix Solution to MultiBranch Networks.- MultiSource Networks and Superposition.- Systems with Initial Conditions.- Application to Transistor Modeling and Circuits.- Op-Amp Filters.- Multi-port Network: Z-, Y-Parameters.- Scattering (s-) Parameters.- Application of Spectral Techniques to Solving 2D Electrostatic Problems.- Application of Spectral Techniques in Solving Diffusion Problems.- Application of Spectral Techniques in Solving the Wave Equation.- Appendix.- References.- Index.
Introduction.- Steady State Solutions to Circuit Problems.- Differential Equation Solution to Circuit Problems.- Series Expansion solution for Circuit Problems.- Numerical Differential Equation Solution to Circuit Problems.- Fourier Series and Periodic Functions.- Complex Fourier Series.- Fourier Transform.- Properties of the Fourier Transforms.- Further Examples/Topics on Fourier Transform.- Fourier Transform of Periodic Signals.- Approximate and Numerical Techniques in Fourier Transform.- Bandwidth.- Laplace Transform.- Using Complex Integration to Figure Inverse Laplace Transform.- Properties of Laplace Transform.- Laplace Transform of Periodic Functions.- Finding Inverse Laplace Transform via Partial Fractions.- Convolution.- Signal Construction in Terms of Convolution Integrals.- The Delta Function.- Impulse Response.- Time Convolution with Impulse Response.- Time Convolution with the Unit Step Response.- Sampling and the Sampling Theorem.- Transfer Functions.- The Phase.- Stability and Relation to Poles Placements.- Impulse Response as Configured from Inverse Transform.- Unit Step Response as Configured from Inverse Transform.- Pulse response.- Causal Cosine and Sine Response.- Causal, Periodic Pulse Response.- Slanted Unit Step Response.- Voltage/Voltage Filters.- RLC Circuits with Feedback.- Matrix Solution to MultiBranch Networks.- MultiSource Networks and Superposition.- Systems with Initial Conditions.- Application to Transistor Modeling and Circuits.- Op-Amp Filters.- Multi-port Network: Z-, Y-Parameters.- Scattering (s−) Parameters.- Application of Spectral Techniques to Solving 2D Electrostatic Problems.- Application of Spectral Techniques in Solving Diffusion Problems.- Application of Spectral Techniques in Solving the Wave Equation.- Appendix.- References.- Index.