22,99 €
inkl. MwSt.

Versandfertig in 6-10 Tagen
payback
11 °P sammeln
  • Broschiertes Buch

High Quality Content by WIKIPEDIA articles! In functional analysis, compact operators are linear operators that map bounded sets to precompact sets. The set of compact operators acting on a Hilbert space H is the closure of the set of finite rank operators in the uniform operator topology. In general, operators on infinite dimensional spaces feature properties that do not appear in the finite dimensional case, i.e. for matrices. The family of compact operators are notable in that they share as much similarity with matrices as one can expect from a general operator. In particular, the spectral…mehr

Produktbeschreibung
High Quality Content by WIKIPEDIA articles! In functional analysis, compact operators are linear operators that map bounded sets to precompact sets. The set of compact operators acting on a Hilbert space H is the closure of the set of finite rank operators in the uniform operator topology. In general, operators on infinite dimensional spaces feature properties that do not appear in the finite dimensional case, i.e. for matrices. The family of compact operators are notable in that they share as much similarity with matrices as one can expect from a general operator. In particular, the spectral properties of compact operators resemble those of square matrices.