40,23 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
payback
0 °P sammeln
  • Broschiertes Buch

Revealing structural and mechanistic details of Channelrhodopsin-2 (ChR2) is in the focus of current scientific research due to its unique ability to stimulate cell activity by light (optogenetics). Hence, ChR2 is a promising tool to revolutionize medical treatment. The aim of this work was the investigation of the light-activated mechanism of the retinylidene cation channel ChR2 on an atomistic level by means of vibrational spectroscopy. In addition to successful expression and purification of ChR2, resonance Raman and FTIR spectroscopy elucidated the structure of the chromophore binding…mehr

Produktbeschreibung
Revealing structural and mechanistic details of Channelrhodopsin-2 (ChR2) is in the focus of current scientific research due to its unique ability to stimulate cell activity by light (optogenetics). Hence, ChR2 is a promising tool to revolutionize medical treatment. The aim of this work was the investigation of the light-activated mechanism of the retinylidene cation channel ChR2 on an atomistic level by means of vibrational spectroscopy. In addition to successful expression and purification of ChR2, resonance Raman and FTIR spectroscopy elucidated the structure of the chromophore binding pocket as well as the gating mechanism triggered by a single hydrogen bond between two residues (¿DC gate¿). Therefore, FTIR difference spectroscopic results were correlated with time-resolved UV/Vis spectroscopy. Flash photolysis allowed characterization of the time scale of proton release with subsequent uptake using an indicator dye. Application and modification of advanced biophysical techniques such as surface-enhanced FTIR, single-molecule force spectroscopy and doubly vibrationally-enhanced four wave mixing set the basis to obtain even deeper insights into the structure and function of membrane proteins like ChR2.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Melanie Hey (geb. Nack) hat ihr Diplom-Biochemie-Studium an der Universität Bielefeld im Jahr 2008 abgeschlossen. Im direkten Anschluss hat sie ihre Doktorarbeit in der biohysikalischen Chemie der Universität Bielefeld begonnen und ein Jahr später die Arbeitsgruppe um Prof. Dr. Joachim Heberle in die Experimentalphysik der Freien Universität Berlin begleitet. Dabei hat sie Kooperationen mit der Biochemie der Universität Bielefeld, mit dem Forschungszentrum Jülich, der Heinrich-Heine Universität Düsseldorf und dem Max-Planck-Institut für Biophysik in Frankfurt a.M. fortgesetzt. Anschließend an einen mehrmonatigen Forschungsaufenthalt am Imperial College London hat sie ihre Dissertation im Jahr 2012 eingereicht und später erfolgreich verteidigt.