A speech percept can reveal information about the speaker including gender, age, language, and emotion. Several existing speech recognition systems used in IoT applications are integrated with an emotion detection system in order to analyze the emotional state of the speaker. The performance of the emotion detection system can greatly influence the overall performance of the IoT application in many ways and can provide many advantages over the functionalities of these applications. This research presents a speech emotion detection system with improvements over an existing system in terms of data, feature selection, and methodology that aims at classifying speech percepts based on emotions, more accurately.