Richard Evan Schwartz
Spherical CR Geometry and Dehn Surgery
Richard Evan Schwartz
Spherical CR Geometry and Dehn Surgery
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible…mehr
Andere Kunden interessierten sich auch für
- Ib MadsenClassifying Spaces for Surgery and Corbordism of Manifolds97,99 €
- John AllenEuclid's Elements of Geometry, the First Six Books: To Which Are Added, Elements of Plain and Spherical Trogonometry, a System of Conick Sections, Ele31,99 €
- Michel ChaslesTwo Geometrical Memoirs On The General Properties Of Cones Of The Second Degree And Of The Spherical Conics (1841)25,99 €
- Silvestre François LacroixAn Elementary Treatise on Plane and Spherical Trigonometry22,99 €
- William J. McClellandA Treatise On Spherical Trigonometry, Part One25,99 €
- John MathesonAn Elementary Treatise on Spherical Trigonometry [microform]: With Applications to Geodesy and Astronomy, Intended for the Use of Practical Science St19,99 €
- Edward OlneyKey To Olney's Elements Of Geometry And Plane And Spherical Trigonometry24,99 €
-
-
-
This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Princeton University Press
- Seitenzahl: 200
- Erscheinungstermin: 18. Februar 2007
- Englisch
- Abmessung: 234mm x 156mm x 11mm
- Gewicht: 313g
- ISBN-13: 9780691128108
- ISBN-10: 0691128103
- Artikelnr.: 22580093
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Princeton University Press
- Seitenzahl: 200
- Erscheinungstermin: 18. Februar 2007
- Englisch
- Abmessung: 234mm x 156mm x 11mm
- Gewicht: 313g
- ISBN-13: 9780691128108
- ISBN-10: 0691128103
- Artikelnr.: 22580093
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Richard Evan Schwartz is Professor of Mathematics at Brown University.
Preface xi
PART 1. BASIC MATERIAL 1
Chapter 1. Introduction 3
1.1 Dehn Filling and Thurston's Theorem 3
1.2 Definition of a Horotube Group 3
1.3 The Horotube Surgery Theorem 4
1.4 Reflection Triangle Groups 6
1.5 Spherical CR Structures 7
1.6 The Goldman-Parker Conjecture 9
1.7 Organizational Notes 10
Chapter 2. Rank-One Geometry 12
2.1 Real Hyperbolic Geometry 12
2.2 Complex Hyperbolic Geometry 13
2.3 The Siegel Domain and Heisenberg Space 16
2.4 The Heisenberg Contact Form 19
2.5 Some Invariant Functions 20
2.6 Some Geometric Objects 21
Chapter 3. Topological Generalities 23
3.1 The Hausdorff Topology 23
3.2 Singular Models and Spines 24
3.3 A Transversality Result 25
3.4 Discrete Groups 27
3.5 Geometric Structures 28
3.6 Orbifold Fundamental Groups 29
3.7 Orbifolds with Boundary 30
Chapter 4. Reflection Triangle Groups 32
4.1 The Real Hyperbolic Case 32
4.2 The Action on the Unit Tangent Bundle 33
4.3 Fuchsian Triangle Groups 33
4.4 Complex Hyperbolic Triangles 35
4.5 The Representation Space 37
4.6 The Ideal Case 37
Chapter 5. Heuristic Discussion of Geometric Filling 41
5.1 A Dictionary 41
5.2 The Tree Example 42
5.3 Hyperbolic Case: Before Filling 44
5.4 Hyperbolic Case: After Filling 45
5.5 Spherical CR Case: Before Filling 47
5.6 Spherical CR Case: After Filling 48
5.7 The Tree Example Revisited 49
PART 2. PROOF OF THE HST 51
Chapter 6. Extending Horotube Functions 53
6.1 Statement of Results 53
6.2 Proof of the Extension Lemma 54
6.3 Proof of the Auxiliary Lemma 55
Chapter 7. Transplanting Horotube Functions 56
7.1 Statement of Results 56
7.2 A Toy Case 56
7.3 Proof of the Transplant Lemma 59
Chapter 8. The Local Surgery Formula 61
8.1 Statement of Results 61
8.2 The Canonical Marking 62
8.3 The Homeomorphism 63
8.4 The Surgery Formula 64
Chapter 9. Horotube Assignments 66
9.1 Basic Definitions 66
9.2 The Main Result 67
9.3 Corollaries 69
Chapter 10. Constructing the Boundary Complex 72
10.1 Statement of Results 72
10.2 Proof of the Structure Lemma 73
10.3 Proof of the Horotube Assignment Lemma 75
Chapter 11. Extending to the Inside 78
11.1 Statement of Results 78
11.2 Proof of the Transversality Lemma 79
11.3 Proof of the Local Structure Lemma 81
11.4 Proof of the Compatibility Lemma 82
11.5 Proof of the Finiteness Lemma 83
Chapter 12. Machinery for Proving Discreteness 85
12.1 Chapter Overview 85
12.2 Simple Complexes 86
12.3 Chunks 86
12.4 Geometric Equivalence Relations 87
12.5 Alignment by a Simple Complex 88
Chapter 13. Proof of the HST 91
13.1 The Unperturbed Case 91
13.2 The Perturbed Case 92
13.3 Defining the Chunks 94
13.4 The Discreteness Proof 96
13.5 The Surgery Formula 97
13.6 Horotube Group Structure 97
13.7 Proof of Theorem 1.11 99
13.8 Dealing with Elliptics 100
PART 3. THE APPLICATIONS 103
Chapter 14. The Convergence Lemmas 105
14.1 Statement of Results 105
14.2 Preliminary Lemmas 106
14.3 Proof of the Convergence Lemma I 107
14.4 Proof of the Convergence Lemma II 108
14.5 Proof of the Convergence Lemma III 111
Chapter 15. Cusp Flexibility 113
15.1 Statement of Results 113
15.2 A Quick Dimension Count 114
15.3 Constructing The Diamond Groups 114
15.4 The Analytic Disk 115
15.5 Proof of the Cusp Flexibility Lemma 116
15.6 The Multiplicity of the Trace Map 118
Chapter 16. CR Surgery on the Whitehead Link Complement 121
16.1 Trace Neighborhoods 121
16.2 Applying the HST 122
Chapter 17. Covers of the Whitehead Link Complement 124
17.1 Polygons and Alternating Paths 124
17.2 Identifying the Cusps 125
17.3 Traceful Elements 126
17.4 Taking Roots 127
17.5 Applying the HST 128
Chapter 18. Small-Angle Triangle Groups 131
18.1 Characterizing the Representation Space 131
18.2 Discreteness 132
18.3 Horotube Group Structure 132
18.4 Topological Conjugacy 133
PART 4. STRUCTURE OF IDEAL TRIANGLE GROUPS 137
Chapter 19. Some Spherical CR Geometry 139
19.1 Parabolic R-Cones 139
19.2 Parabolic R-Spheres 139
19.3 Parabolic Elevation Maps 140
19.4 A Normality Condition 141
19.5 Using Normality 142
Chapter 20. The Golden Triangle Group 144
20.1 Main Construction 144
20.2 The Proof modulo Technical Lemmas 145
20.3 Proof of the Horocusp Lemma 148
20.4 Proof of the Intersection Lemma 150
20.5 Proof of the Monotone Lemma 151
20.6 Proof of The Shrinking Lemma 154
Chapter 21. The Manifold at Infinity 156
21.1 A Model for the Fundamental Domain 156
21.2 A Model for the Regular Set 160
21.3 A Model for the Quotient 162
21.4 Identification with the Model 164
Chapter 22. The Groups near the Critical Value 165
22.1 More Spherical CR Geometry 165
22.2 Main Construction 167
22.3 Horotube Group Structure 169
22.4 The Loxodromic Normality Condition 170
Chapter 23. The Groups far from the Critical Value 176
23.1 Discussion of Parameters 176
23.2 The Clifford Torus Picture 176
23.3 The Horotube Group Structure 177
Bibliography 181
Index 185
PART 1. BASIC MATERIAL 1
Chapter 1. Introduction 3
1.1 Dehn Filling and Thurston's Theorem 3
1.2 Definition of a Horotube Group 3
1.3 The Horotube Surgery Theorem 4
1.4 Reflection Triangle Groups 6
1.5 Spherical CR Structures 7
1.6 The Goldman-Parker Conjecture 9
1.7 Organizational Notes 10
Chapter 2. Rank-One Geometry 12
2.1 Real Hyperbolic Geometry 12
2.2 Complex Hyperbolic Geometry 13
2.3 The Siegel Domain and Heisenberg Space 16
2.4 The Heisenberg Contact Form 19
2.5 Some Invariant Functions 20
2.6 Some Geometric Objects 21
Chapter 3. Topological Generalities 23
3.1 The Hausdorff Topology 23
3.2 Singular Models and Spines 24
3.3 A Transversality Result 25
3.4 Discrete Groups 27
3.5 Geometric Structures 28
3.6 Orbifold Fundamental Groups 29
3.7 Orbifolds with Boundary 30
Chapter 4. Reflection Triangle Groups 32
4.1 The Real Hyperbolic Case 32
4.2 The Action on the Unit Tangent Bundle 33
4.3 Fuchsian Triangle Groups 33
4.4 Complex Hyperbolic Triangles 35
4.5 The Representation Space 37
4.6 The Ideal Case 37
Chapter 5. Heuristic Discussion of Geometric Filling 41
5.1 A Dictionary 41
5.2 The Tree Example 42
5.3 Hyperbolic Case: Before Filling 44
5.4 Hyperbolic Case: After Filling 45
5.5 Spherical CR Case: Before Filling 47
5.6 Spherical CR Case: After Filling 48
5.7 The Tree Example Revisited 49
PART 2. PROOF OF THE HST 51
Chapter 6. Extending Horotube Functions 53
6.1 Statement of Results 53
6.2 Proof of the Extension Lemma 54
6.3 Proof of the Auxiliary Lemma 55
Chapter 7. Transplanting Horotube Functions 56
7.1 Statement of Results 56
7.2 A Toy Case 56
7.3 Proof of the Transplant Lemma 59
Chapter 8. The Local Surgery Formula 61
8.1 Statement of Results 61
8.2 The Canonical Marking 62
8.3 The Homeomorphism 63
8.4 The Surgery Formula 64
Chapter 9. Horotube Assignments 66
9.1 Basic Definitions 66
9.2 The Main Result 67
9.3 Corollaries 69
Chapter 10. Constructing the Boundary Complex 72
10.1 Statement of Results 72
10.2 Proof of the Structure Lemma 73
10.3 Proof of the Horotube Assignment Lemma 75
Chapter 11. Extending to the Inside 78
11.1 Statement of Results 78
11.2 Proof of the Transversality Lemma 79
11.3 Proof of the Local Structure Lemma 81
11.4 Proof of the Compatibility Lemma 82
11.5 Proof of the Finiteness Lemma 83
Chapter 12. Machinery for Proving Discreteness 85
12.1 Chapter Overview 85
12.2 Simple Complexes 86
12.3 Chunks 86
12.4 Geometric Equivalence Relations 87
12.5 Alignment by a Simple Complex 88
Chapter 13. Proof of the HST 91
13.1 The Unperturbed Case 91
13.2 The Perturbed Case 92
13.3 Defining the Chunks 94
13.4 The Discreteness Proof 96
13.5 The Surgery Formula 97
13.6 Horotube Group Structure 97
13.7 Proof of Theorem 1.11 99
13.8 Dealing with Elliptics 100
PART 3. THE APPLICATIONS 103
Chapter 14. The Convergence Lemmas 105
14.1 Statement of Results 105
14.2 Preliminary Lemmas 106
14.3 Proof of the Convergence Lemma I 107
14.4 Proof of the Convergence Lemma II 108
14.5 Proof of the Convergence Lemma III 111
Chapter 15. Cusp Flexibility 113
15.1 Statement of Results 113
15.2 A Quick Dimension Count 114
15.3 Constructing The Diamond Groups 114
15.4 The Analytic Disk 115
15.5 Proof of the Cusp Flexibility Lemma 116
15.6 The Multiplicity of the Trace Map 118
Chapter 16. CR Surgery on the Whitehead Link Complement 121
16.1 Trace Neighborhoods 121
16.2 Applying the HST 122
Chapter 17. Covers of the Whitehead Link Complement 124
17.1 Polygons and Alternating Paths 124
17.2 Identifying the Cusps 125
17.3 Traceful Elements 126
17.4 Taking Roots 127
17.5 Applying the HST 128
Chapter 18. Small-Angle Triangle Groups 131
18.1 Characterizing the Representation Space 131
18.2 Discreteness 132
18.3 Horotube Group Structure 132
18.4 Topological Conjugacy 133
PART 4. STRUCTURE OF IDEAL TRIANGLE GROUPS 137
Chapter 19. Some Spherical CR Geometry 139
19.1 Parabolic R-Cones 139
19.2 Parabolic R-Spheres 139
19.3 Parabolic Elevation Maps 140
19.4 A Normality Condition 141
19.5 Using Normality 142
Chapter 20. The Golden Triangle Group 144
20.1 Main Construction 144
20.2 The Proof modulo Technical Lemmas 145
20.3 Proof of the Horocusp Lemma 148
20.4 Proof of the Intersection Lemma 150
20.5 Proof of the Monotone Lemma 151
20.6 Proof of The Shrinking Lemma 154
Chapter 21. The Manifold at Infinity 156
21.1 A Model for the Fundamental Domain 156
21.2 A Model for the Regular Set 160
21.3 A Model for the Quotient 162
21.4 Identification with the Model 164
Chapter 22. The Groups near the Critical Value 165
22.1 More Spherical CR Geometry 165
22.2 Main Construction 167
22.3 Horotube Group Structure 169
22.4 The Loxodromic Normality Condition 170
Chapter 23. The Groups far from the Critical Value 176
23.1 Discussion of Parameters 176
23.2 The Clifford Torus Picture 176
23.3 The Horotube Group Structure 177
Bibliography 181
Index 185
Preface xi
PART 1. BASIC MATERIAL 1
Chapter 1. Introduction 3
1.1 Dehn Filling and Thurston's Theorem 3
1.2 Definition of a Horotube Group 3
1.3 The Horotube Surgery Theorem 4
1.4 Reflection Triangle Groups 6
1.5 Spherical CR Structures 7
1.6 The Goldman-Parker Conjecture 9
1.7 Organizational Notes 10
Chapter 2. Rank-One Geometry 12
2.1 Real Hyperbolic Geometry 12
2.2 Complex Hyperbolic Geometry 13
2.3 The Siegel Domain and Heisenberg Space 16
2.4 The Heisenberg Contact Form 19
2.5 Some Invariant Functions 20
2.6 Some Geometric Objects 21
Chapter 3. Topological Generalities 23
3.1 The Hausdorff Topology 23
3.2 Singular Models and Spines 24
3.3 A Transversality Result 25
3.4 Discrete Groups 27
3.5 Geometric Structures 28
3.6 Orbifold Fundamental Groups 29
3.7 Orbifolds with Boundary 30
Chapter 4. Reflection Triangle Groups 32
4.1 The Real Hyperbolic Case 32
4.2 The Action on the Unit Tangent Bundle 33
4.3 Fuchsian Triangle Groups 33
4.4 Complex Hyperbolic Triangles 35
4.5 The Representation Space 37
4.6 The Ideal Case 37
Chapter 5. Heuristic Discussion of Geometric Filling 41
5.1 A Dictionary 41
5.2 The Tree Example 42
5.3 Hyperbolic Case: Before Filling 44
5.4 Hyperbolic Case: After Filling 45
5.5 Spherical CR Case: Before Filling 47
5.6 Spherical CR Case: After Filling 48
5.7 The Tree Example Revisited 49
PART 2. PROOF OF THE HST 51
Chapter 6. Extending Horotube Functions 53
6.1 Statement of Results 53
6.2 Proof of the Extension Lemma 54
6.3 Proof of the Auxiliary Lemma 55
Chapter 7. Transplanting Horotube Functions 56
7.1 Statement of Results 56
7.2 A Toy Case 56
7.3 Proof of the Transplant Lemma 59
Chapter 8. The Local Surgery Formula 61
8.1 Statement of Results 61
8.2 The Canonical Marking 62
8.3 The Homeomorphism 63
8.4 The Surgery Formula 64
Chapter 9. Horotube Assignments 66
9.1 Basic Definitions 66
9.2 The Main Result 67
9.3 Corollaries 69
Chapter 10. Constructing the Boundary Complex 72
10.1 Statement of Results 72
10.2 Proof of the Structure Lemma 73
10.3 Proof of the Horotube Assignment Lemma 75
Chapter 11. Extending to the Inside 78
11.1 Statement of Results 78
11.2 Proof of the Transversality Lemma 79
11.3 Proof of the Local Structure Lemma 81
11.4 Proof of the Compatibility Lemma 82
11.5 Proof of the Finiteness Lemma 83
Chapter 12. Machinery for Proving Discreteness 85
12.1 Chapter Overview 85
12.2 Simple Complexes 86
12.3 Chunks 86
12.4 Geometric Equivalence Relations 87
12.5 Alignment by a Simple Complex 88
Chapter 13. Proof of the HST 91
13.1 The Unperturbed Case 91
13.2 The Perturbed Case 92
13.3 Defining the Chunks 94
13.4 The Discreteness Proof 96
13.5 The Surgery Formula 97
13.6 Horotube Group Structure 97
13.7 Proof of Theorem 1.11 99
13.8 Dealing with Elliptics 100
PART 3. THE APPLICATIONS 103
Chapter 14. The Convergence Lemmas 105
14.1 Statement of Results 105
14.2 Preliminary Lemmas 106
14.3 Proof of the Convergence Lemma I 107
14.4 Proof of the Convergence Lemma II 108
14.5 Proof of the Convergence Lemma III 111
Chapter 15. Cusp Flexibility 113
15.1 Statement of Results 113
15.2 A Quick Dimension Count 114
15.3 Constructing The Diamond Groups 114
15.4 The Analytic Disk 115
15.5 Proof of the Cusp Flexibility Lemma 116
15.6 The Multiplicity of the Trace Map 118
Chapter 16. CR Surgery on the Whitehead Link Complement 121
16.1 Trace Neighborhoods 121
16.2 Applying the HST 122
Chapter 17. Covers of the Whitehead Link Complement 124
17.1 Polygons and Alternating Paths 124
17.2 Identifying the Cusps 125
17.3 Traceful Elements 126
17.4 Taking Roots 127
17.5 Applying the HST 128
Chapter 18. Small-Angle Triangle Groups 131
18.1 Characterizing the Representation Space 131
18.2 Discreteness 132
18.3 Horotube Group Structure 132
18.4 Topological Conjugacy 133
PART 4. STRUCTURE OF IDEAL TRIANGLE GROUPS 137
Chapter 19. Some Spherical CR Geometry 139
19.1 Parabolic R-Cones 139
19.2 Parabolic R-Spheres 139
19.3 Parabolic Elevation Maps 140
19.4 A Normality Condition 141
19.5 Using Normality 142
Chapter 20. The Golden Triangle Group 144
20.1 Main Construction 144
20.2 The Proof modulo Technical Lemmas 145
20.3 Proof of the Horocusp Lemma 148
20.4 Proof of the Intersection Lemma 150
20.5 Proof of the Monotone Lemma 151
20.6 Proof of The Shrinking Lemma 154
Chapter 21. The Manifold at Infinity 156
21.1 A Model for the Fundamental Domain 156
21.2 A Model for the Regular Set 160
21.3 A Model for the Quotient 162
21.4 Identification with the Model 164
Chapter 22. The Groups near the Critical Value 165
22.1 More Spherical CR Geometry 165
22.2 Main Construction 167
22.3 Horotube Group Structure 169
22.4 The Loxodromic Normality Condition 170
Chapter 23. The Groups far from the Critical Value 176
23.1 Discussion of Parameters 176
23.2 The Clifford Torus Picture 176
23.3 The Horotube Group Structure 177
Bibliography 181
Index 185
PART 1. BASIC MATERIAL 1
Chapter 1. Introduction 3
1.1 Dehn Filling and Thurston's Theorem 3
1.2 Definition of a Horotube Group 3
1.3 The Horotube Surgery Theorem 4
1.4 Reflection Triangle Groups 6
1.5 Spherical CR Structures 7
1.6 The Goldman-Parker Conjecture 9
1.7 Organizational Notes 10
Chapter 2. Rank-One Geometry 12
2.1 Real Hyperbolic Geometry 12
2.2 Complex Hyperbolic Geometry 13
2.3 The Siegel Domain and Heisenberg Space 16
2.4 The Heisenberg Contact Form 19
2.5 Some Invariant Functions 20
2.6 Some Geometric Objects 21
Chapter 3. Topological Generalities 23
3.1 The Hausdorff Topology 23
3.2 Singular Models and Spines 24
3.3 A Transversality Result 25
3.4 Discrete Groups 27
3.5 Geometric Structures 28
3.6 Orbifold Fundamental Groups 29
3.7 Orbifolds with Boundary 30
Chapter 4. Reflection Triangle Groups 32
4.1 The Real Hyperbolic Case 32
4.2 The Action on the Unit Tangent Bundle 33
4.3 Fuchsian Triangle Groups 33
4.4 Complex Hyperbolic Triangles 35
4.5 The Representation Space 37
4.6 The Ideal Case 37
Chapter 5. Heuristic Discussion of Geometric Filling 41
5.1 A Dictionary 41
5.2 The Tree Example 42
5.3 Hyperbolic Case: Before Filling 44
5.4 Hyperbolic Case: After Filling 45
5.5 Spherical CR Case: Before Filling 47
5.6 Spherical CR Case: After Filling 48
5.7 The Tree Example Revisited 49
PART 2. PROOF OF THE HST 51
Chapter 6. Extending Horotube Functions 53
6.1 Statement of Results 53
6.2 Proof of the Extension Lemma 54
6.3 Proof of the Auxiliary Lemma 55
Chapter 7. Transplanting Horotube Functions 56
7.1 Statement of Results 56
7.2 A Toy Case 56
7.3 Proof of the Transplant Lemma 59
Chapter 8. The Local Surgery Formula 61
8.1 Statement of Results 61
8.2 The Canonical Marking 62
8.3 The Homeomorphism 63
8.4 The Surgery Formula 64
Chapter 9. Horotube Assignments 66
9.1 Basic Definitions 66
9.2 The Main Result 67
9.3 Corollaries 69
Chapter 10. Constructing the Boundary Complex 72
10.1 Statement of Results 72
10.2 Proof of the Structure Lemma 73
10.3 Proof of the Horotube Assignment Lemma 75
Chapter 11. Extending to the Inside 78
11.1 Statement of Results 78
11.2 Proof of the Transversality Lemma 79
11.3 Proof of the Local Structure Lemma 81
11.4 Proof of the Compatibility Lemma 82
11.5 Proof of the Finiteness Lemma 83
Chapter 12. Machinery for Proving Discreteness 85
12.1 Chapter Overview 85
12.2 Simple Complexes 86
12.3 Chunks 86
12.4 Geometric Equivalence Relations 87
12.5 Alignment by a Simple Complex 88
Chapter 13. Proof of the HST 91
13.1 The Unperturbed Case 91
13.2 The Perturbed Case 92
13.3 Defining the Chunks 94
13.4 The Discreteness Proof 96
13.5 The Surgery Formula 97
13.6 Horotube Group Structure 97
13.7 Proof of Theorem 1.11 99
13.8 Dealing with Elliptics 100
PART 3. THE APPLICATIONS 103
Chapter 14. The Convergence Lemmas 105
14.1 Statement of Results 105
14.2 Preliminary Lemmas 106
14.3 Proof of the Convergence Lemma I 107
14.4 Proof of the Convergence Lemma II 108
14.5 Proof of the Convergence Lemma III 111
Chapter 15. Cusp Flexibility 113
15.1 Statement of Results 113
15.2 A Quick Dimension Count 114
15.3 Constructing The Diamond Groups 114
15.4 The Analytic Disk 115
15.5 Proof of the Cusp Flexibility Lemma 116
15.6 The Multiplicity of the Trace Map 118
Chapter 16. CR Surgery on the Whitehead Link Complement 121
16.1 Trace Neighborhoods 121
16.2 Applying the HST 122
Chapter 17. Covers of the Whitehead Link Complement 124
17.1 Polygons and Alternating Paths 124
17.2 Identifying the Cusps 125
17.3 Traceful Elements 126
17.4 Taking Roots 127
17.5 Applying the HST 128
Chapter 18. Small-Angle Triangle Groups 131
18.1 Characterizing the Representation Space 131
18.2 Discreteness 132
18.3 Horotube Group Structure 132
18.4 Topological Conjugacy 133
PART 4. STRUCTURE OF IDEAL TRIANGLE GROUPS 137
Chapter 19. Some Spherical CR Geometry 139
19.1 Parabolic R-Cones 139
19.2 Parabolic R-Spheres 139
19.3 Parabolic Elevation Maps 140
19.4 A Normality Condition 141
19.5 Using Normality 142
Chapter 20. The Golden Triangle Group 144
20.1 Main Construction 144
20.2 The Proof modulo Technical Lemmas 145
20.3 Proof of the Horocusp Lemma 148
20.4 Proof of the Intersection Lemma 150
20.5 Proof of the Monotone Lemma 151
20.6 Proof of The Shrinking Lemma 154
Chapter 21. The Manifold at Infinity 156
21.1 A Model for the Fundamental Domain 156
21.2 A Model for the Regular Set 160
21.3 A Model for the Quotient 162
21.4 Identification with the Model 164
Chapter 22. The Groups near the Critical Value 165
22.1 More Spherical CR Geometry 165
22.2 Main Construction 167
22.3 Horotube Group Structure 169
22.4 The Loxodromic Normality Condition 170
Chapter 23. The Groups far from the Critical Value 176
23.1 Discussion of Parameters 176
23.2 The Clifford Torus Picture 176
23.3 The Horotube Group Structure 177
Bibliography 181
Index 185