Eckhard Schulze, Martin Peitz, Frederik Niemeyer
SQL Data Warehousing mit SAP HANA
Flexibles Datenmanagement mit SQL
Eckhard Schulze, Martin Peitz, Frederik Niemeyer
SQL Data Warehousing mit SAP HANA
Flexibles Datenmanagement mit SQL
- Gebundenes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
Die Standardlösung SAP BW/4HANA passt nicht für Ihr Unternehmen? Dieses umfassende Handbuch zeigt Ihnen, wie Sie ein SQL Data Warehouse auf SAP HANA aufbauen. Von der Entwicklung einer geeigneten Architektur über die Datenmodellierung bis hin zur Beladung des Data Warehouse erfahren Sie anhand zahlreicher Beispiele, wie Sie vorgehen sollten. Auch die Anbindung an SAP Data Warehouse Cloud erläutert das erfahrene Autorenteam Ihnen.
Aus dem Inhalt:
Data-Warehousing-Ansätze von SAP im VergleichEinsatzgebiete von SQL Data WarehousingArchitektur- und…mehr
Andere Kunden interessierten sich auch für
- Bert BraaschSAP HANA - Datenbankadministration89,90 €
- Marlene KniggeSAP BW/4HANA79,90 €
- Clemens KrügerEinstieg in SAP HANA49,90 €
- Holger HandelUnternehmensplanung mit SAP Analytics Cloud89,90 €
- Andreas ForsterData Science mit SAP HANA89,90 €
- Josef HamppApplikationsdesign mit SAP Analytics Cloud89,90 €
- Ferenc GulyássyDisposition mit SAP89,90 €
-
-
-
Die Standardlösung SAP BW/4HANA passt nicht für Ihr Unternehmen? Dieses umfassende Handbuch zeigt Ihnen, wie Sie ein SQL Data Warehouse auf SAP HANA aufbauen. Von der Entwicklung einer geeigneten Architektur über die Datenmodellierung bis hin zur Beladung des Data Warehouse erfahren Sie anhand zahlreicher Beispiele, wie Sie vorgehen sollten. Auch die Anbindung an SAP Data Warehouse Cloud erläutert das erfahrene Autorenteam Ihnen.
Aus dem Inhalt:
Data-Warehousing-Ansätze von SAP im VergleichEinsatzgebiete von SQL Data WarehousingArchitektur- und DatenmodellierungskonzepteDevOps-AnsatzPhysisches, logisches und konzeptionelles DatenmodellEntwicklung auf der SAP-HANA-PlattformDatenspeicherung und -analyseDatenbeschaffung und BetriebWerkzeuge der SAP HANA Data Warehousing Foundation
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Aus dem Inhalt:
Data-Warehousing-Ansätze von SAP im VergleichEinsatzgebiete von SQL Data WarehousingArchitektur- und DatenmodellierungskonzepteDevOps-AnsatzPhysisches, logisches und konzeptionelles DatenmodellEntwicklung auf der SAP-HANA-PlattformDatenspeicherung und -analyseDatenbeschaffung und BetriebWerkzeuge der SAP HANA Data Warehousing Foundation
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- SAP PRESS
- Verlag: Rheinwerk Verlag / SAP PRESS
- Artikelnr. des Verlages: 459/07817
- Seitenzahl: 560
- Erscheinungstermin: 30. Juni 2021
- Deutsch
- Abmessung: 246mm x 177mm x 35mm
- Gewicht: 1158g
- ISBN-13: 9783836278171
- ISBN-10: 3836278170
- Artikelnr.: 61382483
- SAP PRESS
- Verlag: Rheinwerk Verlag / SAP PRESS
- Artikelnr. des Verlages: 459/07817
- Seitenzahl: 560
- Erscheinungstermin: 30. Juni 2021
- Deutsch
- Abmessung: 246mm x 177mm x 35mm
- Gewicht: 1158g
- ISBN-13: 9783836278171
- ISBN-10: 3836278170
- Artikelnr.: 61382483
Eckhard Schulze ist Unternehmensberater der ISR Information Products AG im Bereich SAP Information Management mit den Schwerpunkten Data-Warehouse-Architektur, Datenmodellierung und HANA Data Warehousing. Seine Kenntnisse konnte er sowohl in Best-of-Breed- als auch in Best-of-Suite-Architekturen einsetzen und erweitern. Im Unternehmen dient Eckhard Schulze als fachlicher Experte im Bereich HANA SQL Data Warehousing und verantwortet die technische BI-Systemlandschaft (Cloud und on premise). Zusätzlich ist er Kurstrainer und Systemarchitekt der SAP HANA Data Warehousing Schulung (HDW410) bei SAP.
Einleitung ... 17
TEIL I. Einführung ... 23
1. Ziele und Einsatzgebiete von Data Warehousing ... 25
1.1 ... Neue Anforderungen an das Data Warehousing ... 27
1.2 ... Data-Warehousing-Ansätze von SAP im Vergleich ... 33
1.3 ... Warum SAP SQL Data Warehousing? ... 47
1.4 ... Zusammenfassung ... 53
2. Einführung in SAP HANA als Plattform ... 55
2.1 ... Architektur der SAP-HANA-Plattform ... 55
2.2 ... Die Funktionen der SAP-HANA-Plattform ... 63
2.3 ... Werkzeuge der SAP-HANA-Plattform ... 77
2.4 ... Zusammenfassung ... 83
TEIL II. Architektur- und Datenmodellierungskonzepte eines SQL Data Warehouse ... 85
3. Referenzarchitektur eines modernen Data Warehouse ... 87
3.1 ... Data-Warehouse-Architektur ... 87
3.2 ... Zweck der Referenzarchitektur ... 96
3.3 ... Konzeption und Vorteile der Referenzarchitektur ... 97
3.4 ... Bestandteile der Referenzarchitektur ... 98
3.5 ... Business-Intelligence-Tools ... 108
3.6 ... Zusammenfassung ... 109
4. Entwicklungsansatz für das SAP SQL DWH ... 111
4.1 ... Unterschiedliche Entwicklungsansätze im Vergleich ... 111
4.2 ... DevOps-Ansatz für SAP SQL Data Warehousing ... 126
4.3 ... Zusammenfassung ... 139
5. Methodische Grundlagen für das Data Warehousing ... 141
5.1 ... Modellierungsprozess ... 142
5.2 ... Modellierungsarten ... 154
5.3 ... Prozessorganisation ... 178
5.4 ... Teamarbeit und Prozessautomatisierung ... 181
5.5 ... Zusammenfassung ... 187
6. Technische Grundlagen ... 189
6.1 ... Infrastruktur ... 190
6.2 ... Core Data Services ... 201
6.3 ... Persistenztypen ... 211
6.4 ... Datenzugriff ... 214
6.5 ... Datentransformation und Orchestrierung ... 236
6.6 ... Analyseobjekte ... 245
6.7 ... Sonstige Datenbankobjekte ... 255
6.8 ... Zusammenfassung ... 258
TEIL III. Modellierung und Implementierung eines SQL Data Warehouse ... 259
7. Modellierung des konzeptionellen Datenmodells ... 261
7.1 ... Issue Tracking ... 262
7.2 ... Anforderungsaufnahme ... 266
7.3 ... Zusammenfassung ... 279
8. Modellierung der physischen Datenmodelle ... 281
8.1 ... Erstellen des Datenmodells der Quellsysteme ... 283
8.2 ... Erstellen des quellgetriebenen Datenmodells ... 292
8.3 ... Erstellen des Core-Datenmodells ... 303
8.4 ... Erstellen der analytischen Datenmodelle ... 321
8.5 ... Export der Datenmodelle ... 331
8.6 ... Zusammenfassung ... 334
9. Entwicklung des SQL Data Warehouse ... 337
9.1 ... Initialisierung von Git und SAP Web IDE ... 338
9.2 ... Import der SAP-PowerDesigner-Datenmodelle ... 342
9.3 ... Datenzugriff ... 346
9.4 ... Datentransformation ... 357
9.5 ... Implementierung von Calculation Views im Virtual Analytical Layer ... 378
9.6 ... Implementierung von Calculation Views in Data Marts ... 387
9.7 ... Berechtigungskonzept für analytische Sichten ... 391
9.8 ... Zusammenfassung ... 393
10. Deployment des SAP SQL Data Warehouse ... 395
10.1 ... Manuelles Deployment ... 396
10.2 ... Automatisches Deployment ... 400
10.3 ... Testautomation ... 404
10.4 ... Zusammenfassung ... 408
11. Beladung und Betrieb des SQL Data Warehouse ... 409
11.1 ... Beladung und Orchestrierung ... 410
11.2 ... Data Lifecycle Manager ... 415
11.3 ... Data Distribution Optimizer ... 419
11.4 ... Data Warehouse Monitoring ... 425
11.5 ... Zusammenfassung ... 426
TEIL IV. Ergänzende Werkzeuge ... 429
12. SAP Analytics Cloud ... 431
12.1 ... SAP Analytics Cloud im Überblick ... 432
12.2 ... Anbinden von Datenquellen ... 436
12.3 ... Datenmodellierung ... 441
12.4 ... Erstellen von Storys ... 446
12.5 ... Zusammenfassung ... 452
13. SAP Data Warehouse Cloud ... 453
13.1 ... SAP Data Warehouse Cloud im Überblick ... 454
13.2 ... SAP Data Warehouse Cloud und SAP SQL DWH ... 474
13.3 ... Zusammenfassung ... 483
14. SAP Data Intelligence ... 485
14.1 ... Architektur von SAP Data Intelligence ... 486
14.2 ... Datenmanagement und Datenorchestrierung ... 494
14.3 ... Machine Learning ... 504
14.4 ... Anwendungsbeispiel für SAP Data Intelligence ... 514
14.5 ... SAP Data Intelligence und SAP SQL DWH ... 532
14.6 ... Zusammenfassung ... 540
Abkürzungsverzeichnis ... 543
Literaturverzeichnis ... 549
Die Autoren ... 553
Index ... 555
TEIL I. Einführung ... 23
1. Ziele und Einsatzgebiete von Data Warehousing ... 25
1.1 ... Neue Anforderungen an das Data Warehousing ... 27
1.2 ... Data-Warehousing-Ansätze von SAP im Vergleich ... 33
1.3 ... Warum SAP SQL Data Warehousing? ... 47
1.4 ... Zusammenfassung ... 53
2. Einführung in SAP HANA als Plattform ... 55
2.1 ... Architektur der SAP-HANA-Plattform ... 55
2.2 ... Die Funktionen der SAP-HANA-Plattform ... 63
2.3 ... Werkzeuge der SAP-HANA-Plattform ... 77
2.4 ... Zusammenfassung ... 83
TEIL II. Architektur- und Datenmodellierungskonzepte eines SQL Data Warehouse ... 85
3. Referenzarchitektur eines modernen Data Warehouse ... 87
3.1 ... Data-Warehouse-Architektur ... 87
3.2 ... Zweck der Referenzarchitektur ... 96
3.3 ... Konzeption und Vorteile der Referenzarchitektur ... 97
3.4 ... Bestandteile der Referenzarchitektur ... 98
3.5 ... Business-Intelligence-Tools ... 108
3.6 ... Zusammenfassung ... 109
4. Entwicklungsansatz für das SAP SQL DWH ... 111
4.1 ... Unterschiedliche Entwicklungsansätze im Vergleich ... 111
4.2 ... DevOps-Ansatz für SAP SQL Data Warehousing ... 126
4.3 ... Zusammenfassung ... 139
5. Methodische Grundlagen für das Data Warehousing ... 141
5.1 ... Modellierungsprozess ... 142
5.2 ... Modellierungsarten ... 154
5.3 ... Prozessorganisation ... 178
5.4 ... Teamarbeit und Prozessautomatisierung ... 181
5.5 ... Zusammenfassung ... 187
6. Technische Grundlagen ... 189
6.1 ... Infrastruktur ... 190
6.2 ... Core Data Services ... 201
6.3 ... Persistenztypen ... 211
6.4 ... Datenzugriff ... 214
6.5 ... Datentransformation und Orchestrierung ... 236
6.6 ... Analyseobjekte ... 245
6.7 ... Sonstige Datenbankobjekte ... 255
6.8 ... Zusammenfassung ... 258
TEIL III. Modellierung und Implementierung eines SQL Data Warehouse ... 259
7. Modellierung des konzeptionellen Datenmodells ... 261
7.1 ... Issue Tracking ... 262
7.2 ... Anforderungsaufnahme ... 266
7.3 ... Zusammenfassung ... 279
8. Modellierung der physischen Datenmodelle ... 281
8.1 ... Erstellen des Datenmodells der Quellsysteme ... 283
8.2 ... Erstellen des quellgetriebenen Datenmodells ... 292
8.3 ... Erstellen des Core-Datenmodells ... 303
8.4 ... Erstellen der analytischen Datenmodelle ... 321
8.5 ... Export der Datenmodelle ... 331
8.6 ... Zusammenfassung ... 334
9. Entwicklung des SQL Data Warehouse ... 337
9.1 ... Initialisierung von Git und SAP Web IDE ... 338
9.2 ... Import der SAP-PowerDesigner-Datenmodelle ... 342
9.3 ... Datenzugriff ... 346
9.4 ... Datentransformation ... 357
9.5 ... Implementierung von Calculation Views im Virtual Analytical Layer ... 378
9.6 ... Implementierung von Calculation Views in Data Marts ... 387
9.7 ... Berechtigungskonzept für analytische Sichten ... 391
9.8 ... Zusammenfassung ... 393
10. Deployment des SAP SQL Data Warehouse ... 395
10.1 ... Manuelles Deployment ... 396
10.2 ... Automatisches Deployment ... 400
10.3 ... Testautomation ... 404
10.4 ... Zusammenfassung ... 408
11. Beladung und Betrieb des SQL Data Warehouse ... 409
11.1 ... Beladung und Orchestrierung ... 410
11.2 ... Data Lifecycle Manager ... 415
11.3 ... Data Distribution Optimizer ... 419
11.4 ... Data Warehouse Monitoring ... 425
11.5 ... Zusammenfassung ... 426
TEIL IV. Ergänzende Werkzeuge ... 429
12. SAP Analytics Cloud ... 431
12.1 ... SAP Analytics Cloud im Überblick ... 432
12.2 ... Anbinden von Datenquellen ... 436
12.3 ... Datenmodellierung ... 441
12.4 ... Erstellen von Storys ... 446
12.5 ... Zusammenfassung ... 452
13. SAP Data Warehouse Cloud ... 453
13.1 ... SAP Data Warehouse Cloud im Überblick ... 454
13.2 ... SAP Data Warehouse Cloud und SAP SQL DWH ... 474
13.3 ... Zusammenfassung ... 483
14. SAP Data Intelligence ... 485
14.1 ... Architektur von SAP Data Intelligence ... 486
14.2 ... Datenmanagement und Datenorchestrierung ... 494
14.3 ... Machine Learning ... 504
14.4 ... Anwendungsbeispiel für SAP Data Intelligence ... 514
14.5 ... SAP Data Intelligence und SAP SQL DWH ... 532
14.6 ... Zusammenfassung ... 540
Abkürzungsverzeichnis ... 543
Literaturverzeichnis ... 549
Die Autoren ... 553
Index ... 555
Einleitung ... 17
TEIL I. Einführung ... 23
1. Ziele und Einsatzgebiete von Data Warehousing ... 25
1.1 ... Neue Anforderungen an das Data Warehousing ... 27
1.2 ... Data-Warehousing-Ansätze von SAP im Vergleich ... 33
1.3 ... Warum SAP SQL Data Warehousing? ... 47
1.4 ... Zusammenfassung ... 53
2. Einführung in SAP HANA als Plattform ... 55
2.1 ... Architektur der SAP-HANA-Plattform ... 55
2.2 ... Die Funktionen der SAP-HANA-Plattform ... 63
2.3 ... Werkzeuge der SAP-HANA-Plattform ... 77
2.4 ... Zusammenfassung ... 83
TEIL II. Architektur- und Datenmodellierungskonzepte eines SQL Data Warehouse ... 85
3. Referenzarchitektur eines modernen Data Warehouse ... 87
3.1 ... Data-Warehouse-Architektur ... 87
3.2 ... Zweck der Referenzarchitektur ... 96
3.3 ... Konzeption und Vorteile der Referenzarchitektur ... 97
3.4 ... Bestandteile der Referenzarchitektur ... 98
3.5 ... Business-Intelligence-Tools ... 108
3.6 ... Zusammenfassung ... 109
4. Entwicklungsansatz für das SAP SQL DWH ... 111
4.1 ... Unterschiedliche Entwicklungsansätze im Vergleich ... 111
4.2 ... DevOps-Ansatz für SAP SQL Data Warehousing ... 126
4.3 ... Zusammenfassung ... 139
5. Methodische Grundlagen für das Data Warehousing ... 141
5.1 ... Modellierungsprozess ... 142
5.2 ... Modellierungsarten ... 154
5.3 ... Prozessorganisation ... 178
5.4 ... Teamarbeit und Prozessautomatisierung ... 181
5.5 ... Zusammenfassung ... 187
6. Technische Grundlagen ... 189
6.1 ... Infrastruktur ... 190
6.2 ... Core Data Services ... 201
6.3 ... Persistenztypen ... 211
6.4 ... Datenzugriff ... 214
6.5 ... Datentransformation und Orchestrierung ... 236
6.6 ... Analyseobjekte ... 245
6.7 ... Sonstige Datenbankobjekte ... 255
6.8 ... Zusammenfassung ... 258
TEIL III. Modellierung und Implementierung eines SQL Data Warehouse ... 259
7. Modellierung des konzeptionellen Datenmodells ... 261
7.1 ... Issue Tracking ... 262
7.2 ... Anforderungsaufnahme ... 266
7.3 ... Zusammenfassung ... 279
8. Modellierung der physischen Datenmodelle ... 281
8.1 ... Erstellen des Datenmodells der Quellsysteme ... 283
8.2 ... Erstellen des quellgetriebenen Datenmodells ... 292
8.3 ... Erstellen des Core-Datenmodells ... 303
8.4 ... Erstellen der analytischen Datenmodelle ... 321
8.5 ... Export der Datenmodelle ... 331
8.6 ... Zusammenfassung ... 334
9. Entwicklung des SQL Data Warehouse ... 337
9.1 ... Initialisierung von Git und SAP Web IDE ... 338
9.2 ... Import der SAP-PowerDesigner-Datenmodelle ... 342
9.3 ... Datenzugriff ... 346
9.4 ... Datentransformation ... 357
9.5 ... Implementierung von Calculation Views im Virtual Analytical Layer ... 378
9.6 ... Implementierung von Calculation Views in Data Marts ... 387
9.7 ... Berechtigungskonzept für analytische Sichten ... 391
9.8 ... Zusammenfassung ... 393
10. Deployment des SAP SQL Data Warehouse ... 395
10.1 ... Manuelles Deployment ... 396
10.2 ... Automatisches Deployment ... 400
10.3 ... Testautomation ... 404
10.4 ... Zusammenfassung ... 408
11. Beladung und Betrieb des SQL Data Warehouse ... 409
11.1 ... Beladung und Orchestrierung ... 410
11.2 ... Data Lifecycle Manager ... 415
11.3 ... Data Distribution Optimizer ... 419
11.4 ... Data Warehouse Monitoring ... 425
11.5 ... Zusammenfassung ... 426
TEIL IV. Ergänzende Werkzeuge ... 429
12. SAP Analytics Cloud ... 431
12.1 ... SAP Analytics Cloud im Überblick ... 432
12.2 ... Anbinden von Datenquellen ... 436
12.3 ... Datenmodellierung ... 441
12.4 ... Erstellen von Storys ... 446
12.5 ... Zusammenfassung ... 452
13. SAP Data Warehouse Cloud ... 453
13.1 ... SAP Data Warehouse Cloud im Überblick ... 454
13.2 ... SAP Data Warehouse Cloud und SAP SQL DWH ... 474
13.3 ... Zusammenfassung ... 483
14. SAP Data Intelligence ... 485
14.1 ... Architektur von SAP Data Intelligence ... 486
14.2 ... Datenmanagement und Datenorchestrierung ... 494
14.3 ... Machine Learning ... 504
14.4 ... Anwendungsbeispiel für SAP Data Intelligence ... 514
14.5 ... SAP Data Intelligence und SAP SQL DWH ... 532
14.6 ... Zusammenfassung ... 540
Abkürzungsverzeichnis ... 543
Literaturverzeichnis ... 549
Die Autoren ... 553
Index ... 555
TEIL I. Einführung ... 23
1. Ziele und Einsatzgebiete von Data Warehousing ... 25
1.1 ... Neue Anforderungen an das Data Warehousing ... 27
1.2 ... Data-Warehousing-Ansätze von SAP im Vergleich ... 33
1.3 ... Warum SAP SQL Data Warehousing? ... 47
1.4 ... Zusammenfassung ... 53
2. Einführung in SAP HANA als Plattform ... 55
2.1 ... Architektur der SAP-HANA-Plattform ... 55
2.2 ... Die Funktionen der SAP-HANA-Plattform ... 63
2.3 ... Werkzeuge der SAP-HANA-Plattform ... 77
2.4 ... Zusammenfassung ... 83
TEIL II. Architektur- und Datenmodellierungskonzepte eines SQL Data Warehouse ... 85
3. Referenzarchitektur eines modernen Data Warehouse ... 87
3.1 ... Data-Warehouse-Architektur ... 87
3.2 ... Zweck der Referenzarchitektur ... 96
3.3 ... Konzeption und Vorteile der Referenzarchitektur ... 97
3.4 ... Bestandteile der Referenzarchitektur ... 98
3.5 ... Business-Intelligence-Tools ... 108
3.6 ... Zusammenfassung ... 109
4. Entwicklungsansatz für das SAP SQL DWH ... 111
4.1 ... Unterschiedliche Entwicklungsansätze im Vergleich ... 111
4.2 ... DevOps-Ansatz für SAP SQL Data Warehousing ... 126
4.3 ... Zusammenfassung ... 139
5. Methodische Grundlagen für das Data Warehousing ... 141
5.1 ... Modellierungsprozess ... 142
5.2 ... Modellierungsarten ... 154
5.3 ... Prozessorganisation ... 178
5.4 ... Teamarbeit und Prozessautomatisierung ... 181
5.5 ... Zusammenfassung ... 187
6. Technische Grundlagen ... 189
6.1 ... Infrastruktur ... 190
6.2 ... Core Data Services ... 201
6.3 ... Persistenztypen ... 211
6.4 ... Datenzugriff ... 214
6.5 ... Datentransformation und Orchestrierung ... 236
6.6 ... Analyseobjekte ... 245
6.7 ... Sonstige Datenbankobjekte ... 255
6.8 ... Zusammenfassung ... 258
TEIL III. Modellierung und Implementierung eines SQL Data Warehouse ... 259
7. Modellierung des konzeptionellen Datenmodells ... 261
7.1 ... Issue Tracking ... 262
7.2 ... Anforderungsaufnahme ... 266
7.3 ... Zusammenfassung ... 279
8. Modellierung der physischen Datenmodelle ... 281
8.1 ... Erstellen des Datenmodells der Quellsysteme ... 283
8.2 ... Erstellen des quellgetriebenen Datenmodells ... 292
8.3 ... Erstellen des Core-Datenmodells ... 303
8.4 ... Erstellen der analytischen Datenmodelle ... 321
8.5 ... Export der Datenmodelle ... 331
8.6 ... Zusammenfassung ... 334
9. Entwicklung des SQL Data Warehouse ... 337
9.1 ... Initialisierung von Git und SAP Web IDE ... 338
9.2 ... Import der SAP-PowerDesigner-Datenmodelle ... 342
9.3 ... Datenzugriff ... 346
9.4 ... Datentransformation ... 357
9.5 ... Implementierung von Calculation Views im Virtual Analytical Layer ... 378
9.6 ... Implementierung von Calculation Views in Data Marts ... 387
9.7 ... Berechtigungskonzept für analytische Sichten ... 391
9.8 ... Zusammenfassung ... 393
10. Deployment des SAP SQL Data Warehouse ... 395
10.1 ... Manuelles Deployment ... 396
10.2 ... Automatisches Deployment ... 400
10.3 ... Testautomation ... 404
10.4 ... Zusammenfassung ... 408
11. Beladung und Betrieb des SQL Data Warehouse ... 409
11.1 ... Beladung und Orchestrierung ... 410
11.2 ... Data Lifecycle Manager ... 415
11.3 ... Data Distribution Optimizer ... 419
11.4 ... Data Warehouse Monitoring ... 425
11.5 ... Zusammenfassung ... 426
TEIL IV. Ergänzende Werkzeuge ... 429
12. SAP Analytics Cloud ... 431
12.1 ... SAP Analytics Cloud im Überblick ... 432
12.2 ... Anbinden von Datenquellen ... 436
12.3 ... Datenmodellierung ... 441
12.4 ... Erstellen von Storys ... 446
12.5 ... Zusammenfassung ... 452
13. SAP Data Warehouse Cloud ... 453
13.1 ... SAP Data Warehouse Cloud im Überblick ... 454
13.2 ... SAP Data Warehouse Cloud und SAP SQL DWH ... 474
13.3 ... Zusammenfassung ... 483
14. SAP Data Intelligence ... 485
14.1 ... Architektur von SAP Data Intelligence ... 486
14.2 ... Datenmanagement und Datenorchestrierung ... 494
14.3 ... Machine Learning ... 504
14.4 ... Anwendungsbeispiel für SAP Data Intelligence ... 514
14.5 ... SAP Data Intelligence und SAP SQL DWH ... 532
14.6 ... Zusammenfassung ... 540
Abkürzungsverzeichnis ... 543
Literaturverzeichnis ... 549
Die Autoren ... 553
Index ... 555