95,99 €
inkl. MwSt.
Versandkostenfrei*
Sofort lieferbar
payback
48 °P sammeln
  • Gebundenes Buch

This book establishes a comprehensive theory to treat square roots of elliptic systems incorporating mixed boundary conditions under minimal geometric assumptions. To lay the groundwork, the text begins by introducing the geometry of locally uniform domains and establishes theory for function spaces on locally uniform domains, including interpolation theory and extension operators. In these introductory parts, fundamental knowledge on function spaces, interpolation theory and geometric measure theory and fractional dimensions are recalled, making the main content of the book easier to…mehr

Produktbeschreibung
This book establishes a comprehensive theory to treat square roots of elliptic systems incorporating mixed boundary conditions under minimal geometric assumptions. To lay the groundwork, the text begins by introducing the geometry of locally uniform domains and establishes theory for function spaces on locally uniform domains, including interpolation theory and extension operators. In these introductory parts, fundamental knowledge on function spaces, interpolation theory and geometric measure theory and fractional dimensions are recalled, making the main content of the book easier to comprehend. The centerpiece of the book is the solution to Kato's square root problem on locally uniform domains. The Kato result is complemented by corresponding L bounds in natural intervals of integrability parameters.
This book will be useful to researchers in harmonic analysis, functional analysis and related areas.
Autorenporträt
Sebastian Bechtel is a postdoctoral researcher in the analysis group of the Delft Institute of Applied Mathematics at Delft university of Technology. He obtained his PhD in Mathematics at the Technical University of Darmstadt, Germany in 2021. His PhD studies were supported by a scholarship of "Studienstiftung des Deutschen Volkes". His research interests include harmonic analysis, PDEs, function spaces, functional calculus, and related topics.