50,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
  • Broschiertes Buch

Dans ce mémoire, nous avons proposé une méthode basée sur l'utilisation de la généralisation du lemme de Gronwall-Bellman pour garantir des conditions suffisantes de stabilisation asymptotique pour une classe de systèmes non linéaires fractionnaires. Nous avons étendu ces résultats dans la stabilisation asymptotique des systèmes non linéaires singuliers fractionnaires et proposé des conditions suffisantes de stabilité asymptotique de l'erreur d'observation dans le cas de l'étude des observateurs pour les systèmes non linéaires fractionnaires et singuliers fractionnaires. Pour les systèmes non…mehr

Produktbeschreibung
Dans ce mémoire, nous avons proposé une méthode basée sur l'utilisation de la généralisation du lemme de Gronwall-Bellman pour garantir des conditions suffisantes de stabilisation asymptotique pour une classe de systèmes non linéaires fractionnaires. Nous avons étendu ces résultats dans la stabilisation asymptotique des systèmes non linéaires singuliers fractionnaires et proposé des conditions suffisantes de stabilité asymptotique de l'erreur d'observation dans le cas de l'étude des observateurs pour les systèmes non linéaires fractionnaires et singuliers fractionnaires. Pour les systèmes non linéaires à dérivée d'ordre entier, nous avons proposé par l'application de la généralisation du lemme de Gronwall-Bellman des conditions suffisantes pour : la stabilisation exponentielle par retour d'état statique et par retour de sortie statique, la stabilisation exponentielle robuste en présence d'incertitudes paramétriques et la commande basée sur un observateur. La technique de stabilisation basée sur l'utilisation de la généralisation du lemme de Gronwall-Bellman est étendue aux systèmes non linéaires fractionnaires et aux systèmes non linéaires singuliers fractionnaires.
Autorenporträt
Docteur en Automatique de l'Université Henri Poincaré Nancy 1(Centre de Recherche en Automatique de Nancy - CRAN, Longwy) etde l'Université Hassan II Ain Chock de Casablanca (UFRAutomatique et Informatique Industrielle). Titulaire d'un Diplômed'Études Supérieures Approfondies (DESA) en Physique et Ingénieurd'Application en Génie Électrique.