25,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
13 °P sammeln
  • Broschiertes Buch

Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, especially in the fields of game theory and combinatorics, the stable roommate problem (SRP) is the problem of finding a stable matching a matching in which there is no pair of elements, each from a different matched set, where each member of the pair prefers the other to their match. This is different from the stable marriage problem in that the stable roommates problem does not require that a set is broken up into male and female subsets. Any person…mehr

Andere Kunden interessierten sich auch für
Produktbeschreibung
Please note that the content of this book primarily consists of articles available from Wikipedia or other free sources online. In mathematics, especially in the fields of game theory and combinatorics, the stable roommate problem (SRP) is the problem of finding a stable matching a matching in which there is no pair of elements, each from a different matched set, where each member of the pair prefers the other to their match. This is different from the stable marriage problem in that the stable roommates problem does not require that a set is broken up into male and female subsets. Any person can prefer anyone in the same set.In a given instance of the Stable Roommates problem (SRP), each of 2n participants ranks the others in strict order of preference. A matching is a set of n disjoint (unordered) pairs of participants. A matching M in an instance of SRP is stable if there are no two participants x and y, each of whom prefers the other to his partner in M. Such a pair is said to block M, or to be a blocking pair with respect to M.