State Space and Unobserved Component Models
Theory and Applications
Herausgeber: Harvey, Andrew; Shephard, Neil; Koopman, Siem Jan
State Space and Unobserved Component Models
Theory and Applications
Herausgeber: Harvey, Andrew; Shephard, Neil; Koopman, Siem Jan
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
A comprehensive overview of developments in the theory and application of state space modeling, first published in 2004.
Andere Kunden interessierten sich auch für
- Ivo Lazarinov PetkovGUI for component behavior based on REMES26,99 €
- Jeovanny A. MarticionRice Husk (RH) ¿ Sawdust Mixture as Component for Particleboard26,99 €
- Sergio de CesareThe Development of Component-based Information Systems231,99 €
- Sergio de CesareThe Development of Component-based Information Systems79,99 €
- Fouad SolimanFuture of Composite Materials36,99 €
- Zach von NaumannFerries of the Puget Sound. A Key Component of Infrastructure15,95 €
- Rahimboj RahimovMulti-component raw mixes44,99 €
-
-
-
A comprehensive overview of developments in the theory and application of state space modeling, first published in 2004.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Verlag: Cambridge University Press
- Seitenzahl: 398
- Erscheinungstermin: 30. Mai 2012
- Englisch
- Abmessung: 244mm x 170mm x 21mm
- Gewicht: 685g
- ISBN-13: 9781107407435
- ISBN-10: 1107407435
- Artikelnr.: 36198737
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
- Verlag: Cambridge University Press
- Seitenzahl: 398
- Erscheinungstermin: 30. Mai 2012
- Englisch
- Abmessung: 244mm x 170mm x 21mm
- Gewicht: 685g
- ISBN-13: 9781107407435
- ISBN-10: 1107407435
- Artikelnr.: 36198737
- Herstellerkennzeichnung
- Books on Demand GmbH
- In de Tarpen 42
- 22848 Norderstedt
- info@bod.de
- 040 53433511
Part I. State Space Models: 1. Introduction to state space time series
analysis James Durbin; 2. State structure, decision making and related
issues Peter Whittle; 3. An introduction to particle filters Simon Maskell;
Part II. Testing: 4. Frequence domain and wavelet-based estimation for
long-memory signal plus noise models Katsuto Tanaka; 5. A goodness-of-fit
test for AR (1) models and power against state-space alternatives T. W.
Anderson and Michael A. Stephens; 6. Test for cycles Andrew C. Harvey; Part
III. Bayesian Inference and Bootstrap: 7. Efficient Bayesian parameter
estimation Sylvia Frühwirth-Schnatter; 8. Empirical Bayesian inference in a
nonparametric regression model Gary Koop and Dale Poirier; 9. Resampling in
state space models David S. Stoffer and Kent D. Wall; Part IV.
Applications: 10. Measuring and forecasting financial variability using
realised variance Ole E. Barndorff-Nielsen, Bent Nielsen, Neil Shephard and
Carla Ysusi; 11. Practical filtering for stochastic volatility models
Jonathan R. Stroud, Nicholas G. Polson and Peter Müller; 12. On
RegComponent time series models and their applications William R. Bell; 13.
State space modeling in macroeconomics and finance using SsfPack in
S+Finmetrics Eric Zivot, Jeffrey Wang and Siem Jan Koopman; 14. Finding
genes in the human genome with hidden Markov models Richard Durbin.
analysis James Durbin; 2. State structure, decision making and related
issues Peter Whittle; 3. An introduction to particle filters Simon Maskell;
Part II. Testing: 4. Frequence domain and wavelet-based estimation for
long-memory signal plus noise models Katsuto Tanaka; 5. A goodness-of-fit
test for AR (1) models and power against state-space alternatives T. W.
Anderson and Michael A. Stephens; 6. Test for cycles Andrew C. Harvey; Part
III. Bayesian Inference and Bootstrap: 7. Efficient Bayesian parameter
estimation Sylvia Frühwirth-Schnatter; 8. Empirical Bayesian inference in a
nonparametric regression model Gary Koop and Dale Poirier; 9. Resampling in
state space models David S. Stoffer and Kent D. Wall; Part IV.
Applications: 10. Measuring and forecasting financial variability using
realised variance Ole E. Barndorff-Nielsen, Bent Nielsen, Neil Shephard and
Carla Ysusi; 11. Practical filtering for stochastic volatility models
Jonathan R. Stroud, Nicholas G. Polson and Peter Müller; 12. On
RegComponent time series models and their applications William R. Bell; 13.
State space modeling in macroeconomics and finance using SsfPack in
S+Finmetrics Eric Zivot, Jeffrey Wang and Siem Jan Koopman; 14. Finding
genes in the human genome with hidden Markov models Richard Durbin.
Part I. State Space Models: 1. Introduction to state space time series
analysis James Durbin; 2. State structure, decision making and related
issues Peter Whittle; 3. An introduction to particle filters Simon Maskell;
Part II. Testing: 4. Frequence domain and wavelet-based estimation for
long-memory signal plus noise models Katsuto Tanaka; 5. A goodness-of-fit
test for AR (1) models and power against state-space alternatives T. W.
Anderson and Michael A. Stephens; 6. Test for cycles Andrew C. Harvey; Part
III. Bayesian Inference and Bootstrap: 7. Efficient Bayesian parameter
estimation Sylvia Frühwirth-Schnatter; 8. Empirical Bayesian inference in a
nonparametric regression model Gary Koop and Dale Poirier; 9. Resampling in
state space models David S. Stoffer and Kent D. Wall; Part IV.
Applications: 10. Measuring and forecasting financial variability using
realised variance Ole E. Barndorff-Nielsen, Bent Nielsen, Neil Shephard and
Carla Ysusi; 11. Practical filtering for stochastic volatility models
Jonathan R. Stroud, Nicholas G. Polson and Peter Müller; 12. On
RegComponent time series models and their applications William R. Bell; 13.
State space modeling in macroeconomics and finance using SsfPack in
S+Finmetrics Eric Zivot, Jeffrey Wang and Siem Jan Koopman; 14. Finding
genes in the human genome with hidden Markov models Richard Durbin.
analysis James Durbin; 2. State structure, decision making and related
issues Peter Whittle; 3. An introduction to particle filters Simon Maskell;
Part II. Testing: 4. Frequence domain and wavelet-based estimation for
long-memory signal plus noise models Katsuto Tanaka; 5. A goodness-of-fit
test for AR (1) models and power against state-space alternatives T. W.
Anderson and Michael A. Stephens; 6. Test for cycles Andrew C. Harvey; Part
III. Bayesian Inference and Bootstrap: 7. Efficient Bayesian parameter
estimation Sylvia Frühwirth-Schnatter; 8. Empirical Bayesian inference in a
nonparametric regression model Gary Koop and Dale Poirier; 9. Resampling in
state space models David S. Stoffer and Kent D. Wall; Part IV.
Applications: 10. Measuring and forecasting financial variability using
realised variance Ole E. Barndorff-Nielsen, Bent Nielsen, Neil Shephard and
Carla Ysusi; 11. Practical filtering for stochastic volatility models
Jonathan R. Stroud, Nicholas G. Polson and Peter Müller; 12. On
RegComponent time series models and their applications William R. Bell; 13.
State space modeling in macroeconomics and finance using SsfPack in
S+Finmetrics Eric Zivot, Jeffrey Wang and Siem Jan Koopman; 14. Finding
genes in the human genome with hidden Markov models Richard Durbin.