In this work, we report improvements achieved in the understanding and control of the magnetically targeted drug delivery, mainly realized by the consideration of time issues and the investigation of dynamic magnetic fields. New approaches to assess the magnetic behavior of nanoparticles in suspensions as well as an advanced examination of the lung drug targeting and the mechanisms of cellular drug uptake after successful localized delivery represent the major achievements compiled in this manuscript. The registered improvements are an important contribution to the further development of the idea of directed therapies promoted by the emerging nanomedicine. This modern medicine is expected to provide techniques that can act on a cellular and even sub-cellular level, treating ailments with considerably more accuracy. Gradually, modern diagnostic and therapeutic techniques should elevate us to the point where we can start thinking more in terms of real "regenerative" medicine. That means, we should be able to precisely and directly address pathologic tissues, save cells and organs by repairing and healing them, rather than extinguishing them.