117,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 1-2 Wochen
  • Broschiertes Buch

Data fusion or statistical file matching techniques merge data sets from different survey samples to solve the problem that exists when no single file contains all the variables of interest. Media agencies are merging television and purchasing data, statistical offices match tax information with income surveys. Many traditional applications are known but information about these procedures is often difficult to achieve. The author proposes the use of multiple imputation (MI) techniques using informative prior distributions to overcome the conditional independence assumption. By means of MI…mehr

Produktbeschreibung
Data fusion or statistical file matching techniques merge data sets from different survey samples to solve the problem that exists when no single file contains all the variables of interest. Media agencies are merging television and purchasing data, statistical offices match tax information with income surveys. Many traditional applications are known but information about these procedures is often difficult to achieve. The author proposes the use of multiple imputation (MI) techniques using informative prior distributions to overcome the conditional independence assumption. By means of MI sensitivity of the unconditional association of the variables not jointy observed can be displayed. An application of the alternative approaches with real world data concludes the book.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Susanne Rässler, Universität Erlangen-Nürnberg, Nürnberg, Germany
Rezensionen
"Statistical matching is one of the methods for the imputation of missing results from survey sampling...This book is totally focused on methods, applications, and results. It devotes little space to the presentation and derivation of various theorems." Technometrics, May 2004