This dissertation describes research into image processing techniques that enhance military operational and support activities. The research extends existing work on image registration by introducing a novel method that exploits local correlations to improve the performance of projection-based image registration algorithms. The dissertation also extends the bounds on image registration performance for both projection-based and full-frame image registration algorithms and extends the Barankin bound from the one-dimensional case to the problem of two-dimensional image registration. It is demonstrated that in some instances, the Cramer-Rao lower bound is an overly-optimistic predictor of image registration performance and that under some conditions, the Barankin bound is a better predictor of shift estimator performance. The research also looks at the related problem of single-frame image denoising using block-based methods. The research introduces three algorithms that operate by identifying regions of interest within a noise-corrupted image and then generating noise free estimates of the regions as averages of similar regions in the image.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.