181,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
91 °P sammeln
  • Gebundenes Buch

This book provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. It provides a valuable link between the application areas - such as database design, artificial neural networks, and decision support - and the more diverse theoretical topics available to the practitioner or researcher. Each section concludes with a description of the wide range of practical applications that have been addressed and the further developments of theoretical…mehr

Produktbeschreibung
This book provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. It provides a valuable link between the application areas - such as database design, artificial neural networks, and decision support - and the more diverse theoretical topics available to the practitioner or researcher. Each section concludes with a description of the wide range of practical applications that have been addressed and the further developments of theoretical techniques.
Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions. It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques.

This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields, including the areas of engineering, statistics, computer science and the social sciences. The book has been updated to cover new methods and applications, and includes a wide range of techniques such as Bayesian methods, neural networks, support vector machines, feature selection and feature reduction techniques.Technical descriptions and motivations are provided, and the techniques are illustrated using real examples.

Statistical Pattern Recognition, 3rd Edition:
Provides a self-contained introduction to statistical pattern recognition.
Includes new material presenting the analysis of complex networks.
Introduces readers to methods for Bayesian density estimation.
Presents descriptions of new applications in biometrics, security, finance and condition monitoring.
Provides descriptions and guidance for implementing techniques, which will be invaluable to software engineers and developers seeking to develop real applications
Describes mathematically the range of statistical pattern recognition techniques.
Presents a variety of exercises including more extensive computer projects.

The in-depth technical descriptions make the book suitable for senior undergraduate and graduate students in statistics, computer science and engineering. Statistical Pattern Recognition is also an excellent reference source for technical professionals. Chapters have been arranged to facilitate implementation of the techniques by software engineers and developers in non-statistical engineering fields.

www.wiley.com/go/statistical_pattern_recognition
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Autorenporträt
Dr Andrew Robert Webb, Senior Researcher, QinetiQ Ltd, Malvern, UK. Dr Keith Derek Copsey, Senior Researcher, QinetiQ Ltd, Malvern, UK.