Statistical thermodynamics and the related domains of statistical physics and quantum mechanics are very important in many fields of research, including plasmas, rarefied gas dynamics, nuclear systems, lasers, semiconductors, superconductivity, ortho- and para-hydrogen, liquid helium, and so on. Statistical Thermodynamics: Understanding the Properties of Macroscopic Systems provides a detailed overview of how to apply statistical principles to obtain the physical and thermodynamic properties of macroscopic systems. Intended for physics, chemistry, and other science students at the graduate level, the book starts with fundamental principles of statistical physics, before diving into thermodynamics. Going further than many advanced textbooks, it includes Bose-Einstein, Fermi-Dirac statistics, and Lattice dynamics as well as applications in polaron theory, electronic gas in a magnetic field, thermodynamics of dielectrics, and magnetic materials in a magnetic field. The book concludes with an examination of statistical thermodynamics using functional integration and Feynman path integrals, and includes a wide range of problems with solutions that explain the theory.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.