Andrew Maczek (Emeritus Professor, Emeritus Professor, University o, Anthony J.H.M. Meijer (Reader in T Reader in Theoretical Chemistry
Statistical Thermodynamics
Andrew Maczek (Emeritus Professor, Emeritus Professor, University o, Anthony J.H.M. Meijer (Reader in T Reader in Theoretical Chemistry
Statistical Thermodynamics
- Broschiertes Buch
- Merkliste
- Auf die Merkliste
- Bewerten Bewerten
- Teilen
- Produkt teilen
- Produkterinnerung
- Produkterinnerung
This self-contained primer covers statistical thermodynamics in a rigorous yet approachable manner, making it the perfect text for undergraduates.
Andere Kunden interessierten sich auch für
- Gareth Price (Professor, Professor, Physical Chemistry, UniversityThermodynamics of Chemical Processes49,99 €
- Robert H. Swendsen (Emeritus Professor, Physics Department, EmerituAn Introduction to Statistical Mechanics and Thermodynamics106,99 €
- David T. Limmer (Professor, Professor, University of California, BeStatistical Mechanics and Stochastic Thermodynamics81,99 €
- M. Scott Shell (Santa Barbara University of California)Thermodynamics and Statistical Mechanics57,99 €
- Christopher Aubin (Fordham University, Bronx, NY)Statistical Thermodynamics134,99 €
- Peter S Riseborough (Usa Temple Univ)STATISTICAL MECHANICS141,99 €
- James H. LuscombeStatistical Mechanics71,99 €
-
-
-
This self-contained primer covers statistical thermodynamics in a rigorous yet approachable manner, making it the perfect text for undergraduates.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Produktdetails
- Produktdetails
- Oxford Chemistry Primers
- Verlag: Oxford University Press
- 2 Revised edition
- Seitenzahl: 136
- Erscheinungstermin: 8. Juni 2017
- Englisch
- Abmessung: 245mm x 189mm x 12mm
- Gewicht: 246g
- ISBN-13: 9780198777489
- ISBN-10: 0198777485
- Artikelnr.: 48451673
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
- Oxford Chemistry Primers
- Verlag: Oxford University Press
- 2 Revised edition
- Seitenzahl: 136
- Erscheinungstermin: 8. Juni 2017
- Englisch
- Abmessung: 245mm x 189mm x 12mm
- Gewicht: 246g
- ISBN-13: 9780198777489
- ISBN-10: 0198777485
- Artikelnr.: 48451673
- Herstellerkennzeichnung
- Libri GmbH
- Europaallee 1
- 36244 Bad Hersfeld
- gpsr@libri.de
Andrew Maczek, until his retirement, was a Senior Lecturer in Physical Chemistry at the University of Sheffield, where his research focused on the thermophysical behaviour of fluids. He obtained his first degree in Chemistry at the University of Oxford, where he stayed on to obtain his DPhil in Inorganic Chemistry with Courtney Philips. During a postdoctoral period at the University of Leeds he came under the influence of Peter Gray and happily converted to become a physical chemist. The first edition of this Primer was written during the years while he was actively engaged in academic pursuits at Sheffield. Anthony Meijer is a reader in Theoretical Chemistry at the University of Sheffield, where he and his research group work on the theoretical study of chemical reactions using both electronic structure and quantum dynamics methods for a wide variety of systems from the formation of molecules in the interstellar medium to the vibrational control of electronically excited states. He obtained an MSc in Chemistry from the University of Utrecht before obtaining a PhD with Ad van der Avoird at the University of Nijmegen. He has been at Sheffield for the past 13 years.
1: The Boltzmann law
2: Sum over states: the molecular partition function
3: Applications of the molecular partition function
4: From molecule to mole: the canonical partition function
5: Distinguishable and indistinguishable particles
6: Two-level systems: a case study
7: Thermodynamic functions: towards a statistical toolkit
8: The ideal monatomic gas: the translational partition function
9: The ideal diatomic gas: internal degrees of freedom
10: The ideal diatomic gas: the rotational partition function
11: ortho and para spin states: a case study
12: The ideal diatomic gas: the vibrational partition function
13: The electronic partition function
14: Heat capacity and Third Law entropy: two case studies
15: Calculating equilibrium constants
Questions and Problems
Additional Mathematical Aspects
2: Sum over states: the molecular partition function
3: Applications of the molecular partition function
4: From molecule to mole: the canonical partition function
5: Distinguishable and indistinguishable particles
6: Two-level systems: a case study
7: Thermodynamic functions: towards a statistical toolkit
8: The ideal monatomic gas: the translational partition function
9: The ideal diatomic gas: internal degrees of freedom
10: The ideal diatomic gas: the rotational partition function
11: ortho and para spin states: a case study
12: The ideal diatomic gas: the vibrational partition function
13: The electronic partition function
14: Heat capacity and Third Law entropy: two case studies
15: Calculating equilibrium constants
Questions and Problems
Additional Mathematical Aspects
1: The Boltzmann law
2: Sum over states: the molecular partition function
3: Applications of the molecular partition function
4: From molecule to mole: the canonical partition function
5: Distinguishable and indistinguishable particles
6: Two-level systems: a case study
7: Thermodynamic functions: towards a statistical toolkit
8: The ideal monatomic gas: the translational partition function
9: The ideal diatomic gas: internal degrees of freedom
10: The ideal diatomic gas: the rotational partition function
11: ortho and para spin states: a case study
12: The ideal diatomic gas: the vibrational partition function
13: The electronic partition function
14: Heat capacity and Third Law entropy: two case studies
15: Calculating equilibrium constants
Questions and Problems
Additional Mathematical Aspects
2: Sum over states: the molecular partition function
3: Applications of the molecular partition function
4: From molecule to mole: the canonical partition function
5: Distinguishable and indistinguishable particles
6: Two-level systems: a case study
7: Thermodynamic functions: towards a statistical toolkit
8: The ideal monatomic gas: the translational partition function
9: The ideal diatomic gas: internal degrees of freedom
10: The ideal diatomic gas: the rotational partition function
11: ortho and para spin states: a case study
12: The ideal diatomic gas: the vibrational partition function
13: The electronic partition function
14: Heat capacity and Third Law entropy: two case studies
15: Calculating equilibrium constants
Questions and Problems
Additional Mathematical Aspects