This valuable compendium of statistical methods features a unique combination of methodology, theory, algorithms and applications. It covers recently developed approaches to handling large and complex data sets, including the Lasso and boosting methods.
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections.
A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods' great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections.
A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods' great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
From the reviews: "This book is a complete study of l1-penalization based statistical methods for high-dimensional data ... . Definitely, this book is useful. ... its strong level in mathematics makes it more suitable to researchers and graduate students who already have a strong background in statistics. ... it gives the state-of-the-art of the theory, and therefore can be used for an advanced course on the topic. ... the last part of the book is an exciting introduction to new research perspectives provided by l1 -penalized methods." (Pierre Alquier, Mathematical Reviews, Issue 2012 e) "All Classical Statisticians interested in the very popular but a bit old methodologies like the Lasso (Tibshirani, 1996), its modifications like adaptive Lasso (Zou, 2006), and their theory, computational algorithms, applications to bioinformatics and other high dimensional applications. All such researchers would find this book worth buying. It is written by two outstanding theoreticians with flair for clear writing and excellent applications. ... theory depends a lot on new concentration inequalities coming from the French probabilists. The book has good collection of these, with proofs." (Jayanta K. Ghosh, International Statistical Review, Vol. 80 (3), 2012)