111,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in 6-10 Tagen
payback
56 °P sammeln
  • Broschiertes Buch

"Stochastic Processes in Quantum Physics" addresses the question 'What is the mathematics needed for describing the movement of quantum particles', and shows that it is the theory of stochastic (in particular Markov) processes and that a relativistic quantum particle has pure-jump sample paths while sample paths of a non-relativistic quantum particle are continuous. Together with known techniques, some new stochastic methods are applied in solving the equation of motion and the equation of dynamics of relativistic quantum particles. The problem of the origin of universes is discussed as an…mehr

Produktbeschreibung
"Stochastic Processes in Quantum Physics" addresses the question 'What is the mathematics needed for describing the movement of quantum particles', and shows that it is the theory of stochastic (in particular Markov) processes and that a relativistic quantum particle has pure-jump sample paths while sample paths of a non-relativistic quantum particle are continuous. Together with known techniques, some new stochastic methods are applied in solving the equation of motion and the equation of dynamics of relativistic quantum particles. The problem of the origin of universes is discussed as an application of the theory. The text is almost self-contained and requires only an elementary knowledge of probability theory at the graduate level, and some selected chapters can be used as (sub-)textbooks for advanced courses on stochastic processes, quantum theory and theoretical chemistry.
Autorenporträt
Masao Nagasawa is professor of mathematics at the University of Zurich, Switzerland.
Rezensionen
"...the text is almost self-contained and requires only an elementary knowledge of probability theory at the graduate level. The book under review is recommended to mathematicians, physicists and graduate students interested in mathematical physics and stochastic processes. Furthermore, some selected chapters can be used as sub-textbooks for advanced courses on stochastic processes, quantum theory and quantum chemistry."

-ZAA