107,99 €
inkl. MwSt.
Versandkostenfrei*
Versandfertig in über 4 Wochen
payback
54 °P sammeln
  • Gebundenes Buch

Discrete event systems (DES) have become pervasive in our daily life. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling of these stochastic simulations has long been a "hard nut to crack." The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization…mehr

Produktbeschreibung
Discrete event systems (DES) have become pervasive in our daily life. Examples include (but are not restricted to) manufacturing and supply chains, transportation, healthcare, call centers, and financial engineering. However, due to their complexities that often involve millions or even billions of events with many variables and constraints, modeling of these stochastic simulations has long been a "hard nut to crack." The advance in available computer technology, especially of cluster and cloud computing, has paved the way for the realization of a number of stochastic simulation optimization for complex discrete event systems. This book will introduce two important techniques initially proposed and developed by Professor Y C Ho and his team; namely perturbation analysis and ordinal optimization for stochastic simulation optimization, and present the state-of-the-art technology, and their future research directions.