Die einfache, gut lesbare und spannende Einführung in die Stochastik - ideal für Bachelor-Studiengänge
Aus dem Inhalt:
Zufallsexperimente, Ergebnismengen - Ereignisse - Zufallsvariablen - Relative Häufigkeiten - Grundbegriffe der deskriptiven Statistik - Endliche Wahrscheinlichkeitsräume - Laplace-Modelle - Elemente der Kombinatorik - Urnen- und Teilchen - Das Paradoxon der ersten Kollision - Die Formel des Ein- und Ausschließens - Der Erwartungswert - Stichprobenentnahme: Die hypergeometrische Verteilung - Mehrstufige Experimente - Bedingte Wahrscheinlichkeiten - Stochastische Unabhängigkeit - Gemeinsame Verteilung von Zufallsvariablen - Die Binomialverteilung und die Multinomialverteilung - Pseudozufallszahlen und Simulation - Varianz - Kovarianz und Korrelation - Diskrete Wahrscheinlichkeitsräume - Wartezeitprobleme - Die Poisson-Verteilung - Gesetz großer Zahlen - Zentraler Grenzwertsatz - Schätzprobleme - Statistische Tests - Allgemeine Modelle - Stetige Verteilungen, Kenngrößen - Mehrdimensionale stetige Verteilungen - Statistische Verfahren bei stetigen Merkmalen - Tabellen - Lösungen zu Übungsaufgaben
Rezension:
"Der Zufall führt Regie bei den wöchentlichen Ziehungen der Lottozahlen und er steht Pate bei Spielen wie Mensch-ärgere-Dich-nicht! oder Roulette - wobei der Zufall meist mit Glück oder Pech verbunden wird. [ ] Das Buch bietet für Einsteiger und Wieder-Einsteiger einen sehr guten Zugang in die Theorie endlicher beziehungsweise diskreter Wahrscheinlichkeitsräume."
RISKNEWS, 02/2005
Aus dem Inhalt:
Zufallsexperimente, Ergebnismengen - Ereignisse - Zufallsvariablen - Relative Häufigkeiten - Grundbegriffe der deskriptiven Statistik - Endliche Wahrscheinlichkeitsräume - Laplace-Modelle - Elemente der Kombinatorik - Urnen- und Teilchen - Das Paradoxon der ersten Kollision - Die Formel des Ein- und Ausschließens - Der Erwartungswert - Stichprobenentnahme: Die hypergeometrische Verteilung - Mehrstufige Experimente - Bedingte Wahrscheinlichkeiten - Stochastische Unabhängigkeit - Gemeinsame Verteilung von Zufallsvariablen - Die Binomialverteilung und die Multinomialverteilung - Pseudozufallszahlen und Simulation - Varianz - Kovarianz und Korrelation - Diskrete Wahrscheinlichkeitsräume - Wartezeitprobleme - Die Poisson-Verteilung - Gesetz großer Zahlen - Zentraler Grenzwertsatz - Schätzprobleme - Statistische Tests - Allgemeine Modelle - Stetige Verteilungen, Kenngrößen - Mehrdimensionale stetige Verteilungen - Statistische Verfahren bei stetigen Merkmalen - Tabellen - Lösungen zu Übungsaufgaben
Rezension:
"Der Zufall führt Regie bei den wöchentlichen Ziehungen der Lottozahlen und er steht Pate bei Spielen wie Mensch-ärgere-Dich-nicht! oder Roulette - wobei der Zufall meist mit Glück oder Pech verbunden wird. [ ] Das Buch bietet für Einsteiger und Wieder-Einsteiger einen sehr guten Zugang in die Theorie endlicher beziehungsweise diskreter Wahrscheinlichkeitsräume."
RISKNEWS, 02/2005
"Der Zufall führt Regie bei den wöchentlichen Ziehungen der Lottozahlen und er steht Pate bei Spielen wie Mensch-ärgere-Dich-nicht! oder Roulette - wobei der Zufall meist mit Glück oder Pech verbunden wird. [ ] Das Buch bietet für Einsteiger und Wieder-Einsteiger einen sehr guten Zugang in die Theorie endlicher beziehungsweise diskreter Wahrscheinlichkeitsräume."
RISKNEWS, 02/2005
RISKNEWS, 02/2005