Das Buch gibt eine Einführung in die mathematischen Grundlagen der Stochastischen Geometrie. Behandelt werden zufällige abgeschlossene Mengen und Punktprozesse von Mengen, wobei der Schwerpunkt auf Modellen im euklidischen Raum liegt (Stationarität, Isotopie). Die Beschränkung auf die Mengenklasse der lokalendlichen Vereinigungen konvexer Körper erlaubt die Einführung von Funktionaldichten als geometrische Kenngrößen ebenso wie den Einsatz von integralgeometrischen Resultaten aus dem zuvor in dieser Reihe erschienen Band "Integralgeometrie".
Das Buch gibt eine Einführung in die mathematischen Grundlagen der Stochastischen Geometrie. Behandelt werden zufällige abgeschlossene Mengen und Punktprozesse von Mengen, wobei der Schwerpunkt auf Modellen im euklidischen Raum liegt (Stationarität, Isotopie). Die Beschränkung auf die Mengenklasse der lokalendlichen Vereinigungen konvexer Körper erlaubt die Einführung von Funktionaldichten als geometrische Kenngrößen ebenso wie den Einsatz von integralgeometrischen Resultaten aus dem zuvor in dieser Reihe erschienen Band "Integralgeometrie".
1 Zufallige Mengen im euklidischen Raum.- 1.1 Der Raum der abgeschlossenen Mengen.- 1.2 Kompakte Mengen und die Hausdorff-Metrik.- 1.3 Zufällige abgeschlossene Mengen.- 1.4 Kenngrößen zufälliger Mengen.- 2 Zufallige Mengen - allgemeine Theorie.- 2.1 Zufällige Mengen in lokalkompakten Räumen.- 2.2 Der Satz von Choquet.- 2.3 Einige Folgerungen.- 3 Punktprozesse.- 3.1 Allgemeine Punktprozesse.- 3.2 Poissonprozesse.- 3.3 Punktprozesse im euklidischen Raum.- 3.4 Markierte Punktprozesse.- 3.5 Punktprozesse abgeschlossener Mengen.- 4 Geometrische Modelle.- 4.1 Ebenenprozesse.- 4.2 Partikelprozesse.- 4.3 Keim-Korn-Prozesse.- 4.4 Keim-Korn-Modelle.- 4.5 Assoziierte Körper.- 5 Funktionaldichten und Stereologie.- 5.1 Dichten additiver Funktionale.- 5.2 Ergodische Dichten.- 5.3 Stereologische Schnittformeln.- 5.4 Formeln für Boolesche Modelle.- 5.5 Dichteschätzung im stationären Fall.- 6 Zufällige Mosaike.- 6.1 Mosaike als Punktprozesse.- 6.2 Voronoi- und Delaunay-Mosaike.- 6.3 Hyperebenen-Mosaike.- 6.4 Mischungseigenschaften.- 7 Anhang.- 7.1 Konvexe Körper und Integralgeometrie.- 7.2 Integralgeometrische Transformationen.- 7.3 Simulationsbeispiele.- Symbolverzeichnis.
Rezensionen
"This book will be very useful for students and university teachers dealing with stochastic geometry at any level. Since it contains a rich choice of nexer results and ideas, it is also of interest for researchers." Mathematical Reviews, Okt. 01
Es gelten unsere Allgemeinen Geschäftsbedingungen: www.buecher.de/agb
Impressum
www.buecher.de ist ein Internetauftritt der buecher.de internetstores GmbH
Geschäftsführung: Monica Sawhney | Roland Kölbl | Günter Hilger
Sitz der Gesellschaft: Batheyer Straße 115 - 117, 58099 Hagen
Postanschrift: Bürgermeister-Wegele-Str. 12, 86167 Augsburg
Amtsgericht Hagen HRB 13257
Steuernummer: 321/5800/1497
USt-IdNr: DE450055826