The profitability of power plant investments depends strongly on uncertain fuel and carbon prices. In this doctoral thesis, we combine fundamental electricity market models with stochastic dynamic programming to evaluate power plant investments under uncertainty. The application of interpolation-based stochastic dynamic programming and approximate dynamic programming allows us to consider a greater variety of stochastic fuel and carbon price scenarios compared to other approaches.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.
Hinweis: Dieser Artikel kann nur an eine deutsche Lieferadresse ausgeliefert werden.